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§ How to ensure software reliability?
§ Classical program logic

§ Verification at compile-time
§ Verification at run-time

§ The next challenge: concurrent software
§ Permission-based separation logic

§ Compile-time verification of concurrent programs

§ Run-time verification of concurrent programs

OUTLINE OF THIS LECTURE
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§ Organisations spend $332 billion on 
software in 2016 (and this number 
increases every year)

§ Large part of development effort goes 
into bug fixing, maintenance, re-
understanding software

§ Software is too complicated to fully 
understand its behaviour by manual 
code inspection

§ Software updates might break the 
software in other places

SOFTWARE IS EVERYWHERE
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Modern software
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THE SOFTWARE QUALITY PROBLEM IS AS OLD AS 
SOFTWARE ITSELF
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Peter Naur
1968
Working on the
Software crisis
report



SOFTWARE QUALITY NOWADAYS

Mars Climate Orbiter:
Crash due to different units

ICT problems Dutch gouvernment

Unreachable 
banks because 
of network 
problems

Toyata Prius: software errors 
due to lack of testing
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OUR APPROACH

Software       Box it       Check the components
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Use logic to describe behaviour of program components
§ Precondition: what do you know in advance?

Example: increaseBy(int n) 
requires n > 0

§ Postcondition: what holds afterwards
Example: increaseBy(int n) 

x increased by n

ensures x == old(x) + n

SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd
(1936 – 2001)

Tony Hoare

Dates 
back to 
the 60-ies

Notation: {P}S{Q}

Hoare triples

precondition postcondition
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HOARE TRIPLES FOR ALL COMPONENTS

{P1}S1{Q1}

{P2}S2{Q2}

{P3}S3{Q3}

{P4}S4{Q4}

{P5}S5{Q5}

{P6}S6{Q6}

{P7}S7{Q7} {P8}S8{Q8}

27/10/2016Reliable Concurrent Software 8



HISTORY OF PROGRAM VERIFICATION

Floyd  - Hoare

Krakatoa

My thesis 
(around 2000) State-of-the-art

Dijkstra
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PROGRAM LOGIC

Bob Floyd
1936 - 2001
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§ Precondition: property that should be satisfied when method is called –
otherwise correct functioning of method is not guaranteed

§ Postcondition: property that method establishes – caller can assume 
this upon return of method  

§ Method specification is contract between implementer and caller of 
method.
§ Caller promises to call method only in states
in which precondition holds
§ Implementer guarantees postcondition will 
be established

PRE- AND POSTCONDITIONS
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§ {P}S{Q}

§ Due to Tony Hoare (1969) 

§ Meaning: if P holds in initial state s, and execution of S in s terminates 
in state s', then Q holds in s’

§ Formally:
{P}S{Q} = ∀s.P(s) Ù (S,s) è s’ Þ Q(s’)

HOARE TRIPLES
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§ Hoare triples: specify behaviour of methods
§ How to guarantee that methods indeed respect this behaviour?

§ Collection of derivation rules to reason about Hoare triples

§ Rules defined by induction on the program structure
§ Proven sound w.r.t. program semantics

§ Here: a very simple language, but exists for more complicated 
languages

HOARE LOGIC
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SOME EXAMPLE PROOF RULES

{P}S1{Q}    {Q}S2{R} 

{P}S1;S2{R}

{P Ù b}S1{Q}     {P Ù ¬b}S2{Q} 

{P}if (b) S1 else S2 {Q}

Seq

If
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{P[v:= e]}v := e{P}
Ass.



.

§ I called loop invariant
§ Preserved by every iteration of the loop

§ Can in general not be found automatically

§ Notation in our language
invariant I;
while (b) S

LOOPS

{I Ù b}S{I} 

{I}while (b) S {I Ù ¬b}
Loop
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{ a ≥ 0 Ù n ≥ 0 } 
k := 0;
z := 1;
{ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
while (k < n)

{  z := z * a;
k := k + 1;

}
{ z = a^n }

What should be the loop invariant?

EXAMPLE: METHOD POWER

z = a^k Ù k ≤ n Ù a ≥ 0 Ù k ≥ 0
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TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino
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Many intermediate predicates can be computed

§ Weakest liberal precondition wp(S,Q)
§ The weakest predicate such that {wp(S,Q)}S{Q}

§ Due to Edsger Dijkstra (1975)
§ Calculus allows to compute weakest 

preconditions of sequential code
§ Proof obligations: preconditions imply weakest 

liberal preconditions

§ Loop invariants still given explicitly 

A CALCULATIONAL APPROACH

1932 -
2002
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Preferably also counter example: why does program not have desired 
behaviour

Alternative: perform symbolic evaluation (forward reasoning)

AUTOMATION

Program with 
desired 
properties

Apply weakest 
precondition  

rules 

Proof 
obligations in 
first-order logic

Automatic 
first-order 

logic provers

√
X
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requires P;  
ensures Q;
.... method() {

body;
}

… method() {
assert P;
body;

assert Q;
}

VALIDITY OF SPECIFICATION AT RUNTIME?
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What would be the difficulties?



§ Changes the program source
§ Methods with multiple exit points
§ Exceptional postconditions
§ Specification-only expressions can not be used in Java assert (as they 

are not in Java)

§ Executability of specifications
§ Class-level specifications

CHALLENGES TO DO THIS SYSTEMATICALLY
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A lot of engineering…
and some research



§ Method bodies wrapped in specification checks
§ Method body wrapped in try-catch-finally to check 

exceptional postconditions

Challenges addressed
§ Undefinedness (0/x)
§ Executability of specifications

§ Quantified expressions
§ \old-expressions

IMPLEMENTATION
CHEON & LEAVENS
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Yoonsik Cheon
JML2

David Cok
OpenJML



§ Transparency:
If there are no annotation violations detected, then 
behaviour with and without run-time checker should be equivalent

§ Isolation:

Annotation violation reported when it occurs
§ Thrustworthy:

Do not report false annotation violations

REQUIREMENTS ON RUN-TIME ASSERTION CHECKER

27/10/2016Reliable Concurrent Software 23



§ Special compilation option
§ Inserts tests at appropriate points
§ Pre-deployment usage

§ Execution with run-time checks 
enabled during debugging phase

§ Final version: without run-time 
checks

§ Post-deployment usage
§ Monitoring for unwanted situations

§ Reducing overhead is crucial

JML RUN-TIME ASSERTION CHECKER
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properties run-time static
data run-time assertion 

checking
deductive verification

traces runtime verification model checking

RUN-TIME VS. STATIC CHECKING
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Challenge: how to combine reasoning about data and traces?



§ Only checks concrete executions
§ Only executable specifications can be checked
§ Problematic: unbounded quantifications over all objects
§ Assignable clauses: which variables are modified by a method

LIMITATIONS OF RUN-TIME CHECKING
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§ Test plan describes what aspects of program will be tested
§ Specifications give idea about interesting corner cases
§ Test coverage should also consider specifications

RUN-TIME ASSERTION CHECKING = EXTENDED 
TESTING
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JMLUnit(NG)



§ Write the test
§ Code to check the outcome – test oracle 
§ Choose input data 

§ Test coverage
§ Are all execution paths exercised? 
§ Are there any inputs that can cause abnormal behaviour? 

§ Time consuming 
§ Testing tends to take more time than coding 

UNIT TESTING CHALLENGES
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JML specifications
§ Machine readable description of intended method behaviour
§ With execution mechanism (RAC)



§ Use JML Specs as Tests/Test Oracles 
§ Take the input test data, evaluate precondition 

§ If true: run the method with input data 
§ If false: skip – meaningless test

§ After execution of the method evaluate the postcondition
§ If true: test passed 
§ If false: test fails, quote the values of the input data 

§ JMLUnitNG: Make this process automatic 

BASIC IDEA
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In essence:
Promoting RAC to unit testing 



§ Comprehensive JML based testing framework
§ Core test generator

§ Collect classes and methods with JML specifications 
§ Data generators with templates for manual input 
§ Create testing structure for everything 

§ Runtime Assertion Checker (RAC) compiler 
§ Embed JML checks into compiled Java code 
§ Report results of evaluating JML expressions to the testing 

framework 
§ Result: a standalone test suite based on the TestNG engine 

JMLUNIT NEW GENERATION
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Daniel Zimmerman   Rinkesh Nagmoti

Efficient with good coverage



SEPARATION LOGIC

John Reynolds
1935 - 2013
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class C {

D f;
D g;

}

class D {
int x := 0;

}

ensures c.g.x = 0;
method m() {
c := new C;
d := new D;
c.f := d;
c.g := d;
update_x(c.f, 3);

}

ensures d.x = v;
method update_x(d, v) {
d.x := v;

}

THE CHALLENGE OF POINTER PROGRAMS

This should not 
be verified!
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§ State distinguishes heap and store
§ Heap contains dynamically allocated data that exists during run-time of 

program 
(Object-oriented program: the objects are stored on the heap)

§ Store (or call stack) contains data related to method call (parameters, 
local variables)

§ Heap accessed by pointers
§ Locations on heap can be aliased
§ Main idea: assertions about state can be decomposed into assertions 

about disjoint substates

SEPARATION LOGIC
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Syntax extension of predicate logic:
φ ::= e.f ® e’ | φ à φ | φ ‒à φ | ... 

where e is an expression, and f a field
Meaning: 

§ e.f ® e’ – heap contains location pointed to by e.f, containing the 
value given by the meaning e’ 

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2, 
respectively

§ φ1 ‒à φ2 – if heap extended with part that satisfies φ1, 
composition satisfies φ2 

Monotone w.r.t. extensions of the heap

INTUITIONISTIC SEPARATION LOGIC

27/10/2016Reliable Concurrent Software 34



where X and Y are logical variables

§ Two interpretations e.f ® v 
§ Field e.f contains value v

§ Permission to access field e.f

A field can only be accessed or written if e.f ® _ holds!
§ Implicit disjointness of parts of the heap allows reasoning about 

(absence) of aliasing
x.f ® _  à y.f ® _ implicitly says that x and y are not aliases

UPDATES AND LOOKUP OF THE HEAP

{e.f ® _} e.f := v {e.f ® v}

{X = e Ù X.f ® Y}v := e.f {X.f ® Y Ù v =  Y}
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.

where R does not contain any variable that is modified by S.

FRAME RULE

{P}S{Q} 

{P à R}S{Q à R}
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Local reasoning
only reason about heap that is actually 
accessed by code fragment
rest of heap is implicitly unaffected



class C {

D f;
D g;

}

class D {
int x := 0;

}

method m() {
c := new C;
d := new D;
c.f := d;
c.g := d;
update_x(c.f, 3);

}

ensures d.x = v;
method update_x(d, v) {
d.x := v;

}

THE CHALLENGE OF POINTER PROGRAMS

Empty frame

c.f ® _ à c.g ® _
does not hold
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Thus: c.f.x == 0 cannot 
be verified



CONCURRENCY: THE NEXT CHALLENGE

Doug Lea
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MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

27/10/2016Reliable Concurrent Software 39



Chalice
Verifast

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki  - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
Concurrent 

separation logic

Floyd  - Hoare

Krakatoa

Dijkstra

Scientific
Organizers

• Marieke Huisman, U Twente
• Einar Johnsen, UiO Oslo

Reliability of Concurrent  
and Distributed Software 

Workshop: 6 - 9 May 2014, Leiden, the Netherlands

Poster design: SuperNova Studios . NL

The Lorentz Center is an international 
center in the sciences. Its aim is to 

organize workshops for scientists in an 
atmosphere that fosters collaborative 

work, discussions and interactions.
For registration see: www.lorentzcenter.nl
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OUR APPROACH
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requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code 

}

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread 
might invalidate 
this!

‘x is in the list’ 
cannot even be 
guaranteed!

Except when no 
other thread can 
update the list

x
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AVOIDING DATA RACES

John Boyland
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§ Separation logic for sequential Java (Parkinson)
§ Concurrent Separation Logic (O’Hearn)
§ Permissions (Boyland)

Permission-based Separation Logic for Java

RECIPE FOR REASONING ABOUT JAVA
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where no variable free in Pi or Qi is changed in Sj (if i ¹ j)

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

{P1}S1{Q1}     .......... {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn} 
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{x = 0}x := x + 1; x := x + 1{x = 2}          {y = 0} y := y + 1; y := y + 1 {y = 2}

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2}

EXAMPLE

No interference between the threads
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§ Permission to access a variable
§ Value between 0 and 1
§ Full permission 1 allows to change the variable
§ Fractional permission in (0, 1) allows to inspect a variable

§ Points-to predicate decorated with a permission
§ Global invariant: for each variable, the sum of all the permissions in 

the system is never more than 1
§ Permissions can be split and combined

PERMISSIONS
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{PointsTo(x,1,0) à Perm(n, ½)} {PointsTo(y,1,0) à Perm(n, ½)}
x := x + n; x := x + n y := y + n; y := y + n

{PointsTo(x,1,2*n) à Perm(n, ½)}       {PointsTo(y,1,2*n) à Perm(n, ½)}         
{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)}

x := x + n; x := x + n || y := y + n; y := y + n

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}}

EXAMPLE

Shared variable is only read
No interference between the threads

Permissions on n equally 
distributed over threads

Perm(x,1) = Perm(x, ½) à Perm(x, ½)
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§ Synchronisation between threads:
§ Exclusive access allows writing
§ Shared access only reading allowed

§ Reasoning about dynamic thread creation

§ Reasoning about thread termination

WHAT MORE IS NEEDED
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§ Precondition fork = precondition run
§ Which permissions are transferred from creating to the newly

created thread
§ Postcondition run = postcondition join

§ Which permissions are released by the terminating thread, and can
be reclaimed by another thread

§ Join only terminates when run has terminated
§ Specification for run final, it can only be changed by extending

definition of predicates preFork and postJoin

RULES FOR FORK AND JOIN
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class Fib {
int number;

void init(n) {
this.number := n;
}

void run() {
..
}

}

EXAMPLE: CLASS FIB

Leonardo di Pisa/
Fibonacci
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pred preFork = number ® _;
group postJoin<perm p> = number ® _;

requires preFork; 
ensures postJoin<1>;
void run() {

if (! (this.number < 2)) 
{ f1 = new Fib; f1.init(number -1); 

f2 = new Fib; f2.init(number - 2);
fork f1; fork f2; join f1; join f2; 
this.number := f1.number + f2.number }

else this.number := 1;
}

FIB’S RUN METHOD

1
p
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requires preFork; 
void run() {

if (! (this.number < 2)) 
{ f1 = new Fib; f1.init(number -1); f2 = new Fib; f2.init(number - 2);

{Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}
[fold preFork (2x)]
{f1.preFork à f2.preFork à Perm(number, 1)}
fork f1; 
{join(f1, 1) à f2.preFork à Perm(number, 1)}
fork f2; 
{join(f1, 1) à join(f2, 1) à Perm(number, 1)}
join f1; join f2; 
{f1.postJoin à f2.postJoin à Perm(number, 1)}
[unfold postJoin (2x)]
{Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}
this.number := f1.number + f2.number 
[close postJoin]
{this.PostJoin}}

else this.number := 1;
}
ensures postJoin(1);

PROOF OUTLINE
pred preFork = number ® _;
group postJoin<perm p> = number ® _;

1
p
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requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code 

}

WHAT MORE WOULD WE LIKE TO VERIFY?

Any other thread 
might invalidate 
this!

‘x is in the list’ 
cannot even be 
guaranteed!

Except when no 
other thread can 
update the list

x
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WORK IN PROGRESS

FUNCTIONAL VERIFICATION OF CONCURRENT 
PROGRAMS

Marina Zaharieva –
Stojanovski
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How to prove:
{x == 0}

<x := x + 1;> || <x := x + 1;>
{x == 2}

Problem:
{x == 0}

< x := x + 1;>
{x == 1}
unstable: assertions can be made invalid by other threads

EXAMPLE: PARALLEL INCREASE

Ghost code solution:
{x = a + b & a == 0 & b == 0}

{x == a + b & a == 0} || {x == a + b & b == 0}
<x := x + 1;>              || <x := x + 1;>
<a := 1;> // ghost                  || <b :=1;> //ghost
{x == a + b & a == 1} || {x == a + b & b == 1}

{x == a + b & a == 1 & b == 1}
{x == 2}

Our approach:
Maintain abstract history of updates

27/10/2016Reliable Concurrent Software 56



class Counter{
int data;
Lock l;  
resource_inv = exists v. PointsTo(data, 1, v);

requires true;
ensures  true;
void increase(int ){

l.lock();       // obtain PointsTo(data, 1, v);
data = data + n;

l.unlock();      // loose PointsTo(data, 1, v + n);
// now we don’t know anything about data anymore
}

}

A JAVA-LIKE PROGRAM

Client:

c = new Counter(0);
fork t1;   //t1 calls c.increase(4);
fork t2;   //t2 calls c.multiply(4);
join t1; 
join t2;

// What is  c.data?

Permission to 
read and 
update data

Needed:
A specification of 
increase that 
records the update
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class Counter {
int data;
Lock l;  
//resource_inv = Perm(data, 1);

//action add(int n) = \old(x) + n;

requires H;
ensures H.add(n);
void increase(int n){

l.lock();  /* start a */ data = data + n; /* record a */ l.unlock(); 
}

}

COUNTER SPECIFICATION

Record LOCAL
changes in the history
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Global behaviour: 
add(4).mul(4) + mul(4).add(4)

Action specifications:
//action add(int n) = \old(x) + n;
//action mul(int n) = \old(x) * n;
c.data == 4 || c.data == 16
Extensions
§ Non-terminating programs
§ Predicting behaviour
§ Abstracting with larger granularity
§ Reasoning about sequences of method calls

COMPUTING THE FINAL VALUE
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Client:

c = new Counter(0);
fork t1;   //t1: c.increase(4);
fork t2;   //t2: c.multiply(4);
join t1; 
join t2;

// What is  c.data?



RUNTIME ASSERTION CHECKING AND CONCURRENCY
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ASSERTION INTERFERENCE
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Thread 1

55

Thread 2

assert display1.getRounds() == display2.getRounds();

66
assert 5                == 6                ;

Reliable Concurrent Software



ASSERTION INTERFERENCE
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Thread 1

55

Thread 2

assert display1.getRounds() == display2.getRounds();

66
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§ Speed up assertions
§ Evaluate assertions on separate checker 

threads

§ Program continues execution
§ Program can change during checks

§ Take snapshot of the memory 
§ Evaluate against snapshot

THE STROBE FRAMEWORK
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Edward E. AftandilianSnapshot evaluation: 
no assertion interference

Reliable Concurrent Software



Implementation
§ Independent tasks
§ Defined as futures
§ Will never change the behaviour of the program

ASYNCHRONOUS ASSERTIONS
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Create snapshot
int preconditionId = Snapshot.initiateProbe(); 

Execute following statements on snapshot projection
currentThread.snapshotId = preconditionId; 

Execute following statements on live state
currentThread.snapshotId = -1; 

Destroy snapshot

Snapshot.completeProbe(preconditionId);

SNAPSHOT INTERFACE
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public void addNode(Node node) { 
int preconditionId = Snapshot.initiateProbe(); 
RVMThread currentThread = RVMThread.getCurrentThread(); 
currentThread.snapshotId = preconditionId; 
assert !this.contains(node); 

currentThread.snapshotId = -1; 
Snapshot.completeProbe(preconditionId); 
node.next = this.next; 

this.next = node; 
assert this.contains(node); 

}

USING THE SNAPSHOT INTERFACE
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No assertion interference

Assertion evaluated 
over snapshot
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/* @ requires !contains(node); 
@ ensures contains(node); @*/

public void addNode(Node node) { 

}

AUTOMATED TRANSLATION WITH SNAPSHOTS
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RVMThread currentThread = RVMThread.getCurrentThread(); 
int preId = Snapshot.initiateProbe(); 
currentThread.snapshotId = preId; 
assert !contains(node); 
currentThread.snapshotId = -1; 
Snapshot.completeProbe(preId); 

int postId = Snapshot.initiateProbe(); 
currentThread.snapshotId = postId; 
assert contains(node); 
currentThread.snapshotId = -1; 
Snapshot.completeProbe(postId); 

node.next = this.next; 
this.next = node; 

Assertion 
evaluated in 
snapshot state
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§ Static verification
§ Annotation generation
§ Generalise abstraction idea (mixing concrete and abstract 

specifications)
§ Dynamic verification

After deployment
§ Memory model aware runtime checking
§ Data race detection and fixing

Before deployment
§ Exercising different executions

FUTURE WORK
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§ Software quality remains a challenge
§ Classical Hoare logic-based techniques are becoming more and more 

powerful
§ Run-time assertion checking powerful extension of standard testing
§ Next challenge: verification of concurrent software

§ Separation logic and permissions
§ Verification of functional properties

§ Also run-time assertion checking has extra challenges when software 
is concurrent

SUMMARY

More information? Try Dafny this afternoon!
Want to try more
Go to: http://www.utwente.nl/vercors
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