
RELIABLE CONCURRENT SOFTWARE

MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

§ How to ensure software reliability?
§ Classical program logic

§ Verification at compile-time
§ Verification at run-time

§ The next challenge: concurrent software
§ Permission-based separation logic

§ Compile-time verification of concurrent programs

§ Run-time verification of concurrent programs

OUTLINE OF THIS LECTURE

27/10/2016Reliable Concurrent Software 2

§ Organisations spend $332 billion on
software in 2016 (and this number
increases every year)

§ Large part of development effort goes
into bug fixing, maintenance, re-
understanding software

§ Software is too complicated to fully
understand its behaviour by manual
code inspection

§ Software updates might break the
software in other places

SOFTWARE IS EVERYWHERE

Reliable Concurrent Software 3

Modern software

27/10/2016

THE SOFTWARE QUALITY PROBLEM IS AS OLD AS
SOFTWARE ITSELF

27/10/2016Reliable Concurrent Software 4

Peter Naur
1968
Working on the
Software crisis
report

SOFTWARE QUALITY NOWADAYS

Mars Climate Orbiter:
Crash due to different units

ICT problems Dutch gouvernment

Unreachable
banks because
of network
problems

Toyata Prius: software errors
due to lack of testing

27/10/2016Reliable Concurrent Software 5

OUR APPROACH

Software Box it Check the components
27/10/2016Reliable Concurrent Software 6

Use logic to describe behaviour of program components
§ Precondition: what do you know in advance?

Example: increaseBy(int n)
requires n > 0

§ Postcondition: what holds afterwards
Example: increaseBy(int n)

x increased by n

ensures x == old(x) + n

SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd
(1936 – 2001)

Tony Hoare

Dates
back to
the 60-ies

Notation: {P}S{Q}

Hoare triples

precondition postcondition
27/10/2016Reliable Concurrent Software 7

HOARE TRIPLES FOR ALL COMPONENTS

{P1}S1{Q1}

{P2}S2{Q2}

{P3}S3{Q3}

{P4}S4{Q4}

{P5}S5{Q5}

{P6}S6{Q6}

{P7}S7{Q7} {P8}S8{Q8}

27/10/2016Reliable Concurrent Software 8

HISTORY OF PROGRAM VERIFICATION

Floyd - Hoare

Krakatoa

My thesis
(around 2000) State-of-the-art

Dijkstra

27/10/2016Reliable Concurrent Software 9

PROGRAM LOGIC

Bob Floyd
1936 - 2001

27/10/2016Reliable Concurrent Software 10

§ Precondition: property that should be satisfied when method is called –
otherwise correct functioning of method is not guaranteed

§ Postcondition: property that method establishes – caller can assume
this upon return of method

§ Method specification is contract between implementer and caller of
method.
§ Caller promises to call method only in states
in which precondition holds
§ Implementer guarantees postcondition will
be established

PRE- AND POSTCONDITIONS

27/10/2016Reliable Concurrent Software 11

§ {P}S{Q}

§ Due to Tony Hoare (1969)

§ Meaning: if P holds in initial state s, and execution of S in s terminates
in state s', then Q holds in s’

§ Formally:
{P}S{Q} = ∀s.P(s) Ù (S,s) è s’ Þ Q(s’)

HOARE TRIPLES

27/10/2016Reliable Concurrent Software 12

§ Hoare triples: specify behaviour of methods
§ How to guarantee that methods indeed respect this behaviour?

§ Collection of derivation rules to reason about Hoare triples

§ Rules defined by induction on the program structure
§ Proven sound w.r.t. program semantics

§ Here: a very simple language, but exists for more complicated
languages

HOARE LOGIC

27/10/2016Reliable Concurrent Software 13

SOME EXAMPLE PROOF RULES

{P}S1{Q} {Q}S2{R}

{P}S1;S2{R}

{P Ù b}S1{Q} {P Ù ¬b}S2{Q}

{P}if (b) S1 else S2 {Q}

Seq

If

27/10/2016Reliable Concurrent Software 14

{P[v:= e]}v := e{P}
Ass.

.

§ I called loop invariant
§ Preserved by every iteration of the loop

§ Can in general not be found automatically

§ Notation in our language
invariant I;
while (b) S

LOOPS

{I Ù b}S{I}

{I}while (b) S {I Ù ¬b}
Loop

27/10/2016Reliable Concurrent Software 15

{ a ≥ 0 Ù n ≥ 0 }
k := 0;
z := 1;
{ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
while (k < n)

{ z := z * a;
k := k + 1;

}
{ z = a^n }

What should be the loop invariant?

EXAMPLE: METHOD POWER

z = a^k Ù k ≤ n Ù a ≥ 0 Ù k ≥ 0

27/10/2016Reliable Concurrent Software 16

TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino

27/10/2016Reliable Concurrent Software 17

Many intermediate predicates can be computed

§ Weakest liberal precondition wp(S,Q)
§ The weakest predicate such that {wp(S,Q)}S{Q}

§ Due to Edsger Dijkstra (1975)
§ Calculus allows to compute weakest

preconditions of sequential code
§ Proof obligations: preconditions imply weakest

liberal preconditions

§ Loop invariants still given explicitly

A CALCULATIONAL APPROACH

1932 -
2002

27/10/2016Reliable Concurrent Software 18

Preferably also counter example: why does program not have desired
behaviour

Alternative: perform symbolic evaluation (forward reasoning)

AUTOMATION

Program with
desired
properties

Apply weakest
precondition

rules

Proof
obligations in
first-order logic

Automatic
first-order

logic provers

√
X

27/10/2016Reliable Concurrent Software 19

requires P;
ensures Q;
.... method() {

body;
}

… method() {
assert P;
body;

assert Q;
}

VALIDITY OF SPECIFICATION AT RUNTIME?

27/10/2016Reliable Concurrent Software 20

What would be the difficulties?

§ Changes the program source
§ Methods with multiple exit points
§ Exceptional postconditions
§ Specification-only expressions can not be used in Java assert (as they

are not in Java)

§ Executability of specifications
§ Class-level specifications

CHALLENGES TO DO THIS SYSTEMATICALLY

27/10/2016Reliable Concurrent Software 21

A lot of engineering…
and some research

§ Method bodies wrapped in specification checks
§ Method body wrapped in try-catch-finally to check

exceptional postconditions

Challenges addressed
§ Undefinedness (0/x)
§ Executability of specifications

§ Quantified expressions
§ \old-expressions

IMPLEMENTATION
CHEON & LEAVENS

27/10/2016Reliable Concurrent Software 22

Yoonsik Cheon
JML2

David Cok
OpenJML

§ Transparency:
If there are no annotation violations detected, then
behaviour with and without run-time checker should be equivalent

§ Isolation:

Annotation violation reported when it occurs
§ Thrustworthy:

Do not report false annotation violations

REQUIREMENTS ON RUN-TIME ASSERTION CHECKER

27/10/2016Reliable Concurrent Software 23

§ Special compilation option
§ Inserts tests at appropriate points
§ Pre-deployment usage

§ Execution with run-time checks
enabled during debugging phase

§ Final version: without run-time
checks

§ Post-deployment usage
§ Monitoring for unwanted situations

§ Reducing overhead is crucial

JML RUN-TIME ASSERTION CHECKER

27/10/2016Reliable Concurrent Software 24

properties run-time static
data run-time assertion

checking
deductive verification

traces runtime verification model checking

RUN-TIME VS. STATIC CHECKING

27/10/2016Reliable Concurrent Software 25

Challenge: how to combine reasoning about data and traces?

§ Only checks concrete executions
§ Only executable specifications can be checked
§ Problematic: unbounded quantifications over all objects
§ Assignable clauses: which variables are modified by a method

LIMITATIONS OF RUN-TIME CHECKING

27/10/2016Reliable Concurrent Software 26

§ Test plan describes what aspects of program will be tested
§ Specifications give idea about interesting corner cases
§ Test coverage should also consider specifications

RUN-TIME ASSERTION CHECKING = EXTENDED
TESTING

27/10/2016Reliable Concurrent Software 27

JMLUnit(NG)

§ Write the test
§ Code to check the outcome – test oracle
§ Choose input data

§ Test coverage
§ Are all execution paths exercised?
§ Are there any inputs that can cause abnormal behaviour?

§ Time consuming
§ Testing tends to take more time than coding

UNIT TESTING CHALLENGES

27/10/2016Reliable Concurrent Software 28

JML specifications
§ Machine readable description of intended method behaviour
§ With execution mechanism (RAC)

§ Use JML Specs as Tests/Test Oracles
§ Take the input test data, evaluate precondition

§ If true: run the method with input data
§ If false: skip – meaningless test

§ After execution of the method evaluate the postcondition
§ If true: test passed
§ If false: test fails, quote the values of the input data

§ JMLUnitNG: Make this process automatic

BASIC IDEA

27/10/2016Reliable Concurrent Software 29

In essence:
Promoting RAC to unit testing

§ Comprehensive JML based testing framework
§ Core test generator

§ Collect classes and methods with JML specifications
§ Data generators with templates for manual input
§ Create testing structure for everything

§ Runtime Assertion Checker (RAC) compiler
§ Embed JML checks into compiled Java code
§ Report results of evaluating JML expressions to the testing

framework
§ Result: a standalone test suite based on the TestNG engine

JMLUNIT NEW GENERATION

27/10/2016Reliable Concurrent Software 30

Daniel Zimmerman Rinkesh Nagmoti

Efficient with good coverage

SEPARATION LOGIC

John Reynolds
1935 - 2013

27/10/2016Reliable Concurrent Software 31

class C {

D f;
D g;

}

class D {
int x := 0;

}

ensures c.g.x = 0;
method m() {
c := new C;
d := new D;
c.f := d;
c.g := d;
update_x(c.f, 3);

}

ensures d.x = v;
method update_x(d, v) {
d.x := v;

}

THE CHALLENGE OF POINTER PROGRAMS

This should not
be verified!

27/10/2016Reliable Concurrent Software 32

§ State distinguishes heap and store
§ Heap contains dynamically allocated data that exists during run-time of

program
(Object-oriented program: the objects are stored on the heap)

§ Store (or call stack) contains data related to method call (parameters,
local variables)

§ Heap accessed by pointers
§ Locations on heap can be aliased
§ Main idea: assertions about state can be decomposed into assertions

about disjoint substates

SEPARATION LOGIC

27/10/2016Reliable Concurrent Software 33

Syntax extension of predicate logic:
φ ::= e.f ® e’ | φ à φ | φ ‒à φ | ...

where e is an expression, and f a field
Meaning:

§ e.f ® e’ – heap contains location pointed to by e.f, containing the
value given by the meaning e’

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2,
respectively

§ φ1 ‒à φ2 – if heap extended with part that satisfies φ1,
composition satisfies φ2

Monotone w.r.t. extensions of the heap

INTUITIONISTIC SEPARATION LOGIC

27/10/2016Reliable Concurrent Software 34

where X and Y are logical variables

§ Two interpretations e.f ® v
§ Field e.f contains value v

§ Permission to access field e.f

A field can only be accessed or written if e.f ® _ holds!
§ Implicit disjointness of parts of the heap allows reasoning about

(absence) of aliasing
x.f ® _ à y.f ® _ implicitly says that x and y are not aliases

UPDATES AND LOOKUP OF THE HEAP

{e.f ® _} e.f := v {e.f ® v}

{X = e Ù X.f ® Y}v := e.f {X.f ® Y Ù v = Y}

27/10/2016Reliable Concurrent Software 35

.

where R does not contain any variable that is modified by S.

FRAME RULE

{P}S{Q}

{P à R}S{Q à R}

27/10/2016Reliable Concurrent Software 36

Local reasoning
only reason about heap that is actually
accessed by code fragment
rest of heap is implicitly unaffected

class C {

D f;
D g;

}

class D {
int x := 0;

}

method m() {
c := new C;
d := new D;
c.f := d;
c.g := d;
update_x(c.f, 3);

}

ensures d.x = v;
method update_x(d, v) {
d.x := v;

}

THE CHALLENGE OF POINTER PROGRAMS

Empty frame

c.f ® _ à c.g ® _
does not hold

27/10/2016Reliable Concurrent Software 37

Thus: c.f.x == 0 cannot
be verified

CONCURRENCY: THE NEXT CHALLENGE

Doug Lea

27/10/2016Reliable Concurrent Software 38

MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

27/10/2016Reliable Concurrent Software 39

Chalice
Verifast

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
Concurrent

separation logic

Floyd - Hoare

Krakatoa

Dijkstra

Scientific
Organizers

• Marieke Huisman, U Twente
• Einar Johnsen, UiO Oslo

Reliability of Concurrent
and Distributed Software

Workshop: 6 - 9 May 2014, Leiden, the Netherlands

Poster design: SuperNova Studios . NL

The Lorentz Center is an international
center in the sciences. Its aim is to

organize workshops for scientists in an
atmosphere that fosters collaborative

work, discussions and interactions.
For registration see: www.lorentzcenter.nl

27/10/2016Reliable Concurrent Software 40

OUR APPROACH

27/10/2016Reliable Concurrent Software 41

requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code

}

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

x

27/10/2016Reliable Concurrent Software 42

AVOIDING DATA RACES

John Boyland

27/10/2016Reliable Concurrent Software 43

§ Separation logic for sequential Java (Parkinson)
§ Concurrent Separation Logic (O’Hearn)
§ Permissions (Boyland)

Permission-based Separation Logic for Java

RECIPE FOR REASONING ABOUT JAVA

27/10/2016Reliable Concurrent Software 44

where no variable free in Pi or Qi is changed in Sj (if i ¹ j)

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

{P1}S1{Q1} {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn}

27/10/2016Reliable Concurrent Software 45

{x = 0}x := x + 1; x := x + 1{x = 2} {y = 0} y := y + 1; y := y + 1 {y = 2}

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2}

EXAMPLE

No interference between the threads

27/10/2016Reliable Concurrent Software 46

§ Permission to access a variable
§ Value between 0 and 1
§ Full permission 1 allows to change the variable
§ Fractional permission in (0, 1) allows to inspect a variable

§ Points-to predicate decorated with a permission
§ Global invariant: for each variable, the sum of all the permissions in

the system is never more than 1
§ Permissions can be split and combined

PERMISSIONS

27/10/2016Reliable Concurrent Software 47

{PointsTo(x,1,0) à Perm(n, ½)} {PointsTo(y,1,0) à Perm(n, ½)}
x := x + n; x := x + n y := y + n; y := y + n

{PointsTo(x,1,2*n) à Perm(n, ½)} {PointsTo(y,1,2*n) à Perm(n, ½)}
{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)}

x := x + n; x := x + n || y := y + n; y := y + n

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}}

EXAMPLE

Shared variable is only read
No interference between the threads

Permissions on n equally
distributed over threads

Perm(x,1) = Perm(x, ½) à Perm(x, ½)

27/10/2016Reliable Concurrent Software 48

§ Synchronisation between threads:
§ Exclusive access allows writing
§ Shared access only reading allowed

§ Reasoning about dynamic thread creation

§ Reasoning about thread termination

WHAT MORE IS NEEDED

27/10/2016Reliable Concurrent Software 49

§ Precondition fork = precondition run
§ Which permissions are transferred from creating to the newly

created thread
§ Postcondition run = postcondition join

§ Which permissions are released by the terminating thread, and can
be reclaimed by another thread

§ Join only terminates when run has terminated
§ Specification for run final, it can only be changed by extending

definition of predicates preFork and postJoin

RULES FOR FORK AND JOIN

27/10/2016Reliable Concurrent Software 50

class Fib {
int number;

void init(n) {
this.number := n;
}

void run() {
..
}

}

EXAMPLE: CLASS FIB

Leonardo di Pisa/
Fibonacci

27/10/2016Reliable Concurrent Software 51

pred preFork = number ® _;
group postJoin<perm p> = number ® _;

requires preFork;
ensures postJoin<1>;
void run() {

if (! (this.number < 2))
{ f1 = new Fib; f1.init(number -1);

f2 = new Fib; f2.init(number - 2);
fork f1; fork f2; join f1; join f2;
this.number := f1.number + f2.number }

else this.number := 1;
}

FIB’S RUN METHOD

1
p

27/10/2016Reliable Concurrent Software 52

requires preFork;
void run() {

if (! (this.number < 2))
{ f1 = new Fib; f1.init(number -1); f2 = new Fib; f2.init(number - 2);

{Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}
[fold preFork (2x)]
{f1.preFork à f2.preFork à Perm(number, 1)}
fork f1;
{join(f1, 1) à f2.preFork à Perm(number, 1)}
fork f2;
{join(f1, 1) à join(f2, 1) à Perm(number, 1)}
join f1; join f2;
{f1.postJoin à f2.postJoin à Perm(number, 1)}
[unfold postJoin (2x)]
{Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}
this.number := f1.number + f2.number
[close postJoin]
{this.PostJoin}}

else this.number := 1;
}
ensures postJoin(1);

PROOF OUTLINE
pred preFork = number ® _;
group postJoin<perm p> = number ® _;

1
p

27/10/2016Reliable Concurrent Software 53

requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code

}

WHAT MORE WOULD WE LIKE TO VERIFY?

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

x

27/10/2016Reliable Concurrent Software 54

WORK IN PROGRESS

FUNCTIONAL VERIFICATION OF CONCURRENT
PROGRAMS

Marina Zaharieva –
Stojanovski

27/10/2016Reliable Concurrent Software 55

Wytse Oortwijn

How to prove:
{x == 0}

<x := x + 1;> || <x := x + 1;>
{x == 2}

Problem:
{x == 0}

< x := x + 1;>
{x == 1}
unstable: assertions can be made invalid by other threads

EXAMPLE: PARALLEL INCREASE

Ghost code solution:
{x = a + b & a == 0 & b == 0}

{x == a + b & a == 0} || {x == a + b & b == 0}
<x := x + 1;> || <x := x + 1;>
<a := 1;> // ghost || <b :=1;> //ghost
{x == a + b & a == 1} || {x == a + b & b == 1}

{x == a + b & a == 1 & b == 1}
{x == 2}

Our approach:
Maintain abstract history of updates

27/10/2016Reliable Concurrent Software 56

class Counter{
int data;
Lock l;
resource_inv = exists v. PointsTo(data, 1, v);

requires true;
ensures true;
void increase(int){

l.lock(); // obtain PointsTo(data, 1, v);
data = data + n;

l.unlock(); // loose PointsTo(data, 1, v + n);
// now we don’t know anything about data anymore
}

}

A JAVA-LIKE PROGRAM

Client:

c = new Counter(0);
fork t1; //t1 calls c.increase(4);
fork t2; //t2 calls c.multiply(4);
join t1;
join t2;

// What is c.data?

Permission to
read and
update data

Needed:
A specification of
increase that
records the update

27/10/2016Reliable Concurrent Software 57

class Counter {
int data;
Lock l;
//resource_inv = Perm(data, 1);

//action add(int n) = \old(x) + n;

requires H;
ensures H.add(n);
void increase(int n){

l.lock(); /* start a */ data = data + n; /* record a */ l.unlock();
}

}

COUNTER SPECIFICATION

Record LOCAL
changes in the history

27/10/2016Reliable Concurrent Software 58

Similar spec for multiply

Global behaviour:
add(4).mul(4) + mul(4).add(4)

Action specifications:
//action add(int n) = \old(x) + n;
//action mul(int n) = \old(x) * n;
c.data == 4 || c.data == 16
Extensions
§ Non-terminating programs
§ Predicting behaviour
§ Abstracting with larger granularity
§ Reasoning about sequences of method calls

COMPUTING THE FINAL VALUE

27/10/2016Reliable Concurrent Software 59

Client:

c = new Counter(0);
fork t1; //t1: c.increase(4);
fork t2; //t2: c.multiply(4);
join t1;
join t2;

// What is c.data?

RUNTIME ASSERTION CHECKING AND CONCURRENCY

27/10/2016 60

4545

Reliable Concurrent Software

ASSERTION INTERFERENCE

27/10/2016 61

Thread 1

55

Thread 2

assert display1.getRounds() == display2.getRounds();

66
assert 5 == 6 ;

Reliable Concurrent Software

ASSERTION INTERFERENCE

27/10/2016 62

Thread 1

55

Thread 2

assert display1.getRounds() == display2.getRounds();

66

Reliable Concurrent Software

§ Speed up assertions
§ Evaluate assertions on separate checker

threads

§ Program continues execution
§ Program can change during checks

§ Take snapshot of the memory
§ Evaluate against snapshot

THE STROBE FRAMEWORK

27/10/2016 63

Edward E. AftandilianSnapshot evaluation:
no assertion interference

Reliable Concurrent Software

Implementation
§ Independent tasks
§ Defined as futures
§ Will never change the behaviour of the program

ASYNCHRONOUS ASSERTIONS

27/10/2016 64Reliable Concurrent Software

Create snapshot
int preconditionId = Snapshot.initiateProbe();

Execute following statements on snapshot projection
currentThread.snapshotId = preconditionId;

Execute following statements on live state
currentThread.snapshotId = -1;

Destroy snapshot

Snapshot.completeProbe(preconditionId);

SNAPSHOT INTERFACE

27/10/2016 65Reliable Concurrent Software

public void addNode(Node node) {
int preconditionId = Snapshot.initiateProbe();
RVMThread currentThread = RVMThread.getCurrentThread();
currentThread.snapshotId = preconditionId;
assert !this.contains(node);

currentThread.snapshotId = -1;
Snapshot.completeProbe(preconditionId);
node.next = this.next;

this.next = node;
assert this.contains(node);

}

USING THE SNAPSHOT INTERFACE

27/10/2016 66

No assertion interference

Assertion evaluated
over snapshot

Reliable Concurrent Software

/* @ requires !contains(node);
@ ensures contains(node); @*/

public void addNode(Node node) {

}

AUTOMATED TRANSLATION WITH SNAPSHOTS

27/10/2016 67

RVMThread currentThread = RVMThread.getCurrentThread();
int preId = Snapshot.initiateProbe();
currentThread.snapshotId = preId;
assert !contains(node);
currentThread.snapshotId = -1;
Snapshot.completeProbe(preId);

int postId = Snapshot.initiateProbe();
currentThread.snapshotId = postId;
assert contains(node);
currentThread.snapshotId = -1;
Snapshot.completeProbe(postId);

node.next = this.next;
this.next = node;

Assertion
evaluated in
snapshot state

Reliable Concurrent Software

§ Static verification
§ Annotation generation
§ Generalise abstraction idea (mixing concrete and abstract

specifications)
§ Dynamic verification

After deployment
§ Memory model aware runtime checking
§ Data race detection and fixing

Before deployment
§ Exercising different executions

FUTURE WORK

27/10/2016Reliable Concurrent Software 68

ACKNOWLEDGEMENTS

Saeed Darabi, Wojciech Mostowski,
Marina Zaharieva-Stojanovski,
Stefan Blom, Afshin Amighi, Wytse Oortwijn

27/10/2016Reliable Concurrent Software 69

§ Software quality remains a challenge
§ Classical Hoare logic-based techniques are becoming more and more

powerful
§ Run-time assertion checking powerful extension of standard testing
§ Next challenge: verification of concurrent software

§ Separation logic and permissions
§ Verification of functional properties

§ Also run-time assertion checking has extra challenges when software
is concurrent

SUMMARY

More information? Try Dafny this afternoon!
Want to try more
Go to: http://www.utwente.nl/vercors

27/10/2016Reliable Concurrent Software 70

