UNIVERSITY OF TWENTE.\/

RELIABLE CONCURRENT SOFTWARE

MARIEKE HUISMAN _—

UNIVERSITY OF TWENTE, NETHERLANDS/§

v

w OUTLINE OF THIS LECTURE

‘VI‘:

« = How to ensure software reliability?
» Classical program logic

= Verification at compile-time
= Verification at run-time
» The next challenge: concurrent software
» Permission-based separation logic
= Compile-time verification of concurrent programs

» Run-time verification of concurrent programs

.- UNIVERSITEIT TWENTE. Reliable Concurrent Software

27/10/2016

2

Organisations spend $332 billion on
software in 2016 (and this number
increases every year)

» Large part of development effort goes
into bug fixing, maintenance, re-
understanding software

= Software is too complicated to fully
understand its behaviour by manual
code inspection

» Software updates might break the
software in other places

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

27/10/2016

3

THE SOFTWARE QUALITY PROBLEM IS AS OLD AS

\SOFTWARE ITSELF

UNIVERSITEIT TWENTE.

Peter Naur
1968

Working on the
Software crisis
report

Reliable Concurrent Software 27/10/2016

4

SOFTWARE QUALITY NOWADAYS

Tweede Kamer

Home . Vergaderingen . Kamerleden - Kamerstukken - Hoewerkthet? - Over de Tweede Kamer

» Kamerniouwe Tijdelijke commissie ICT begonnen met hoorzittingen

De tijdelijke c:
met een serie
waarom lijken

issie ICT-projecten bij e overheid is op vrijdag 25 april 2014 begonnen
ingen. Eer e eer

The Prius. Advanced Technology for Every Lifestyle.

ICT problems Dutch gouvernment | | Toyata Prius: software errors

Learn More. >

g > Inloggen > Klant worden

due to lack of testing

Rabobank > Particulieren > Bedrijven > Private Banking

Home Internetbankieren = Betalen = Sparen | Pensioen @ Hypotheken | Verzekeren | Lenen

> Nieuws Storing betalingsverkeer opgelost
> Fiscaal nieuws

. De storing in Mobielbankieren en Internetbankieren is opg
> Persberichten

'—@ achterstand bij de verwerking van de betalingsopdrachten|
ingelopen.
> Nieuwsbrieven .-" 9
‘ooo’
LL L

> Social media De Rabobank biedt u excuses aan voor het ongemak.

> Acties en aanbiedingen > Zoek de gegevens van een Rabobank in uw buurt

Unreachable
banks because
of network
problems

> Samengaan Friesland Bank Utrecht, 2-5-2014

> Naar het overzicht
OINL e

Disclaimer Privacy en cookies Veilig bankieren Voorwaarden en bijsluiters Toegankelijkheid English Sitema|

UNIVERSITY OF TWENTE.

Mars Climate Orbiter:
Crash due to different units

Reliable Concurrent Software 27/10/2016 5

OUR APPROACH

Software Box it Check the components
UNIVERSITY OF TWENTE. Reliable Concurrent Software 27/10/2016 6

SPECIFYING PROGRAM BEHAVIOUR

Use logic to describe behaviour of program components

= Precondition: what do you know in advance?

Example: increaseBy(int n)
requires n >0
= Postcondition: what holds afterwards
Example: increaseBy(int n)
X increased by n

ensures x == old(x) + n

Dates
back to
the 60-ies

" ¥{Bob Floyd
(1936 — 2001)

Hoare triples

Notation: {P}S{Q}

precondition

postcon
UNIVERSITY OF TWENTE.

Tony Hoare

dition
Reliable Concurrent Software 27/10/2016

HOARE TRIPLES FOR ALL COMPONENTS

g

{PSAQ4} {Ps}Ss{Qs}

{P2}SAQy}

{Pe}Se{ Qs

{P3}S35{Q3} {Ps}Ss{Qs}
UNIVERSITYOF T Reliable Concurrent Software 27/10/2016 8

HISTORY OF PROGRAM VERIFICATION

My thesis
(around 2000) State-of-the-art

oW | =

FOREVER
> KR

Krakatoa

Dafny [’

UNIVERSITY OF TWENTE. Reliable Concurrent Software 27/10/2016 9

Bob Floyd
1936 - 2001

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 10

PRE- AND POSTCONDITIONS

= Precondition: property that should be satisfied when method is called —
otherwise correct functioning of method is not guaranteed

= Postcondition: property that method establishes — caller can assume
this upon return of method

» Method specification is contract between implementer and caller of
method.
= Caller promises to call method only in states
in which precondition holds

» |[mplementer guarantees postcondition will
be established

7z

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 11

HOARE TRIPLES

1PrS{Q}

* Due to Tony Hoare (1969)

= Meaning: if P holds in initial state s, and execution of S in s terminates
in state s, then Q holds in s’

= Formally:
{P}S{Q} = VS.P(s) A (S,s) =2 s’= Q(s)

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 12

HOARE LOGIC

» Hoare triples: specify behaviour of methods

» How to guarantee that methods indeed respect this behaviour?
= Collection of derivation rules to reason about Hoare triples
» Rules defined by induction on the program structure

= Proven sound w.r.t. program semantics

= Here: a very simple language, but exists for more complicated
languages

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016

13

SOME EXAMPLE PROOF RULES

Ass.

{P[v:=e]}v := e{P}

{PSHQ} {QIS2{R}
{PYS1:S2{R)

Seq

[PABISHQY {P A -b}SAQ
[P}if (b) S1 else S2 {Q)

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 14

LOOPS

{I n b}S{I}
{Mwhile (b) S {I A =b}

Loop

= [called loop invariant
» Preserved by every iteration of the loop

= Can in general not be found automatically

= Notation in our language

invariant I
while (b) S

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 15

EXAMPLE: METHOD POWER

{
k:=0;:
z:=1:

{a20An20Ak=0rz=1}
while (k < n)

{ z:=z%a;
k:=k+1;
}
{z=a"n}

What should be the loop invariant?

z=a*kAaks=naraz0aAk=20

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

27/10/2016

16

LA

UNIVERSITEIT TWENTE.

Rustan Leino

Reliable Concurrent Software 27/10/2016

17

A CALCULATIONAL APPROACH

Many intermediate predicates can be computed

= Weakest liberal precondition wp(S, Q)
= The weakest predicate such that {wp(S, Q)}S{Q}
» Due to Edsger Dijkstra (1975)

» Calculus allows to compute weakest
preconditions of sequential code

» Proof obligations: preconditions imply weakest
liberal preconditions

2002

= Loop invariants still given explicitly

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 18

AUTOMATION

Program il Apply weakest Prqof : : Automatic
desired i obligations in :

: precondition : : first-order
properties first-order logic

rules logic provers

4 4

Preferably also counter example: why does program not have desired
behaviour

Alternative: perform symbolic evaluation (forward reasoning)

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 19

LA

,’"/, 7T OO\
uive
N
TN
WA
SRR
:_\\:.
0
\\‘.*:l 2 74
'r::-;'-: -e ,.'/‘"r

/

\

'VALIDITY OF SPECIFICATION AT RUNTIME?

requires P; ... method() {
ensures Q; assert P;
body; assert Q;
}

What would be the difficulties?

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

27/10/2016

20

CHALLENGES TO DO THIS SYSTEMATICALLY

= Changes the program source
= Methods with multiple exit points
= EXxceptional postconditions

= Specification-only expressions can not be used in Java assert (as they
are not in Java)

= Executability of specifications
» Class-level specifications

A lot of engineering...
and some research

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 21

IMPLEMENTATION
CHEON & LEAVENS

= Method bodies wrapped in specification checks
» Method body wrapped in try-catch-finally to check
exceptional postconditions

Challenges addressed
9 = Yoonsik Cheon

» Undefinedness (0/x) 2y JML2

= Quantified expressions

s
Al

A

= \old-expressions Y/ 4 "+ David Cok
OpenJML

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016

22

REQUIREMENTS ON RUN-TIME ASSERTION CHECKER

= Transparency:.

If there are no annotation violations detected, then

behaviour with and without run-time checker should be equivalent
= [solation:

Annotation violation reported when it occurs
» Thrustworthy:

Do not report false annotation violations

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 23

JML RUN-TIME ASSERTION CHECKER

Special compilation option

[+, MADAM Never WRONG d

Inserts tests at appropriate points {7~

= Pre-deployment usage l ONL%
o v MAKE
= Execution with run-time checks PR=DIC TIONS

enabled during debugging phase

= Final version: without run-time Kt 5\ .
checks

Post-deployment usage
= Monitoring for unwanted situations

= Reducing overhead is crucial

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 24

RUN-TIME VS. STATIC CHECKING

properties ____[runtime ______|static

data run-time assertion deductive verification
checking
traces runtime verification model checking

Challenge: how to combine reasoning about data and traces?

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 25

LIMITATIONS OF RUN-TIME CHECKING

Only checks concrete executions

Only executable specifications can be checked

Problematic: unbounded quantifications over all objects

Assignable clauses: which variables are modified by a method

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 26

_ RUN-TIME ASSERTION CHECKING = EXTENDED
~ =TESTING

7« Test plan describes what aspects of program will be tested

» Specifications give idea about interesting corner cases

» Test coverage should also consider specifications

“Wow caN I+

i R

] "HoW cAN I

MAKE IT? BREAK IT?*
3 o 5
i ™ '\\\\@

They weren't so much different,
but they had different goals

JMLUNit(NG)

Reliable Concurrent Software 27/10/2016

27

UNIT TESTING CHALLENGES

= Write the test

» Code to check the outcome — test oracle

= Choose input data
= Test coverage

= Are all execution paths exercised?

= Are there any inputs that can cause abnormal behaviour?
= Time consuming

= Testing tends to take more time than coding

JML specifications
» Machine readable description of intended method behaviour
= With execution mechanism (RAC)

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 28

BASIC IDEA

Use JML Specs as Tests/Test Oracles

Take the input test data, evaluate precondition
= |f true: run the method with input data

» |f false: skip — meaningless test

After execution of the method evaluate the postcondition
= |f true: test passed
= |f false: test fails, quote the values of the input data

JMLUNIitNG: Make this process automatic

In essence:

Promoting RAC to unit testing

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016

29

Daniel Zimmerman Rinkesh Nagmoti

JMLUNIT NEW GENERATION =

~
{

S

Comprehensive JML based testing framework

Core test generator

» Collect classes and methods with JML specifications
» Data generators with templates for manual input

= Create testing structure for everything

Runtime Assertion Checker (RAC) compiler
= Embed JML checks into compiled Java code

» Report results of evaluating JML expressions to the testing
framework

Result: a standalone test suite based on the TestNG engine

Efficient with good coverage

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 30

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

John Reynolds
1935 - 2013

27/10/2016

31

THE CHALLENGE OF POINTER PROGRAMS

class C{ ensures c.g.x =0; | This should not
method m() { be verified!

D f, c :=new C;

D g; d := new D;
} cf:=d;

c.g :=d;

class D { update_x(c.f, 3);

int x :=0; }
}

ensures d.x = v;
method update_x(d, v) {
d.x:=v;

}

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 32

SEPARATION LOGIC

» State distinguishes heap and store

» Heap contains dynamically allocated data that exists during run-time of
program

(Object-oriented program: the objects are stored on the heap)

= Store (or call stack) contains data related to method call (parameters,
local variables)

» Heap accessed by pointers
= Locations on heap can be aliased

» Main idea: assertions about state can be decomposed into assertions
about disjoint substates

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 33

INTUITIONISTIC SEPARATION LOGIC

Syntax extension of predicate logic:
pr=efo>e’|loXx olo—% @]..
where e is an expression, and f a field
Meaning:
= e.f— e’—heap contains location pointed to by e.f, containing the

value given by the meaning e’

= @1 % @2 - heap can be split in disjoint parts, satisfying ¢1 and ¢2,
respectively

= @1 —% @2 -if heap extended with part that satisfies ¢1,
composition satisfies @2

Monotone w.r.t. extensions of the heap

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 34

UPDATES AND LOOKUP OF THE HEAP

{e.f—> }tef=vi{ef-v}

X=erXfo>Ywv=ef{Xf>YArv=Y}

where X and Y are logical variables

» Two interpretations e.f — v
= Fjeld e.f contains value v
= Permission to access field e.f

A field can only be accessed or written if e.f — _ holds!

= Implicit disjointness of parts of the heap allows reasoning about
(absence) of aliasing

x.f— X% yf— implicitly says that x and y are not aliases
UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 35

FRAME RULE

Local reasoning

only reason about heap that is actually
accessed by code fragment

rest of heap is implicitly unaffected

{PYS{Q}

[P * RIS{Q * R}

where R does not contain any variable that is modified by S.

UNIVERSITEIT TWENTE.

Reliable Concurrent Software 27/10/2016

36

THE CHALLENGE OF POINTER PROGRAMS

class C {

Df;
D g;
}

class D {
int x :=0;

}

UNIVERSITEIT TWENTE.

method m() {
c := new C;

d := new D;
cf:=d;

cf—> ¥cg—

does not hold

c.g:=d;
update x(c.f, 3);
}

ensures d.x = v;

Empty frame

method update x(d, v) {

d.x :=v;

}

Thus: c.f.x == 0 cannot
be verified

Reliable Concurrent Software 27/10/2016

37

QCONCURRENCY: THE NEXT CHALLENGE

= ——
—_—

Doug Lea

Reliable Concurrent Software 27/10/2016 38

MULTIPLE THREADS CAUSE PROBLEMS

read v

write v,

= Order?
= More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

shared memory

UNIVERSITEIT TWENTE.

Reliable Concurrent Software 27/10/2016

39

VERIFICATION OF MULTITHREADED PROGRAMS

oW, .

FOREVER e

11

Conurrecy Dafiy |
(multithreading) f WA,
Owicki - Gries O’Hearn

VerCors

™ : 2 . v".j /‘ | .\\'\ ‘/:1:}%\ ! v"‘ S
c 2004 @%Iﬁhalice
& Jones oncurrent erifast

> A separation logic
UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 40

OUR APPROACH

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 41

SPECIFICATIONS IN A CONCURRENT SETTING

, Any other thread
requires true

might invalidate
ensures X is the last element in the list / this!

void add ToList(Elem x) {
Il code

‘x is in the list’
cannot even be
} guaranteed!

Except when no
other thread can
update the list

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 42

e

V ‘AVO|D|NG DATA RACES
Aﬂ‘i

John Boyland

S "UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 43

7 Separation logic for sequential Java (Parkinson)
» Concurrent Separation Logic (O’'Hearn)
» Permissions (Boyland)

Permission-based Separation Logic for Java

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

27/10/2016

44

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

SR—————
P + ~ + A g ¢
RN Kl RN ST TN WO

IPISHQT} ... {Pn}Sn{Qn}

[P1% ... % Pn}S1||...|| Sn{Q1 * ... * Qn}

where no variable free in Pi or Qi is changed in Sj (if i #)

UNIVERSITEIT TWENTE. Reliable Concurrent Software

27/10/2016

45

EXAMPLE

{x=0x=x+1;x=x+1{x=2} {y=0y=y+1,y=y+1{y=2}

xX=0xy=0x=x+1;x=x+1]|ly=y+1,y=y+1{x=2%y=2}

No interference between the threads

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 46

PERMISSIONS

= Permission to access a variable

= Value between 0 and 1

= Full permission 1 allows to change the variable

» Fractional permission in (0, 1) allows to inspect a variable
» Points-to predicate decorated with a permission

» Global invariant: for each variable, the sum of all the permissions in
the system is never more than 1

» Permissions can be split and combined

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 47

EXAMPLE

Permissions on n equally
distributed over threads

{PointsTo(x,1,0) * Perm(n, %)} {PointsTo(y,1,0) * Perm(n, Y2)}

X=X+tn;x=x+n

{PointsTo(x,1,2*n) % Perm(n,)}

y=y+tny=y+n

{PointsTo(x,1,0) % PointsTo(y,1,0) ¥ Perm(n,1)}
X=X+n;x=x+nl|ly:=y+n;y:=y+n
{PointsTo(x,1,2*n) * PointsTo(y,1,2*n) * Perm(n,1)}}

Perm(x,1) = Perm(x, }2) ¥ Perm(x, %2)

UNIVERSITEIT TWENTE.

Shared variable is only read
No interference between the threads

Reliable Concurrent Software 27/10/2016

{PointsTo(y,1,2*n) % Perm(n, 2)}

48

WHAT MORE IS NEEDED

» Synchronisation between threads:
= Exclusive access allows writing
» Shared access only reading allowed
» Reasoning about dynamic thread creation

» Reasoning about thread termination

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 49

RULES FOR FORK AND JOIN

= Precondition fork = precondition run

= Which permissions are transferred from creating to the newly
created thread

= Postcondition run = postcondition join

= Which permissions are released by the terminating thread, and can
be reclaimed by another thread

= Join only terminates when run has terminated

= Specification for run final, it can only be changed by extending
definition of predicates preFork and postJoin

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 50

EXAMPLE: CLASS FIB

class Fib {
int number;

void init(n) {
this.number := n;

}

void run() {

Leonardo di Pisa/
Fibonacci

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 51

FIB’S RUN METHOD

pred preFork = number 1—) o
group postJoin<perm p> = number p_) o

requires preFork;
ensures postdoin<1>;
void run() {

if (! (this.number < 2))
{ 1 =new Fib; f1.init(humber -1);
f2 = new Fib; f2.init(humber - 2);
fork f1; fork f2; join f1; join f2;
this.number := f1.number + f2.number }
else this.number := 1;

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 52

pred preFork = number 1—> L

PROOF OUTLINE group postJoin<perm p> = number N o

requires prefFork;
void run() {
if (! (this.number < 2))
{ f1 =new Fib; f1.init(humber -1); f2 = new Fib; f2.init(number - 2);
{Perm(f1.number, 1) * Perm(f2.number, 1) * Perm(number, 1)}
[fold preFork (2x)]
{f1.preFork * f2.preFork ¥ Perm(number, 1)}
fork f1;
{ioin(f1, 1) * f2.preFork * Perm(number, 1)}
fork f2;
{ioin(f1, 1) * join(f2, 1) * Perm(number, 1)}
join f1; join f2;
{f1.postdoin * f2.postdoin * Perm(number, 1)}
[unfold postJoin (2x)]
{Perm(f1.number, 1) * Perm(f2.number, 1) % Perm(number, 1)}
this.number := f1.number + f2.number
[close postJoin]
{this.PostJoin}}
else this.number := 1;
}
ensures postJoin(1);
UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016

WHAT MORE WOULD WE LIKE TO VERIFY?

, Any other thread
requires true

might invalidate
ensures X is the last element in the list / this!

void add ToList(Elem x) {
Il code

‘x is in the list’
cannot even be
} guaranteed!

Except when no
other thread can
update the list

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 54

Marina Zaharieva — Wytse Oortwijn
StojanovskKi

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 55

EXAMPLE: PARALLEL INCREASE

How to prove: Ghost code solution:
{x=a+b&a==0&b==0}
{x==a+b&a==0} || {x==a+b &b ==0}
<X:=Xx+1;> || <x:=x+1;>
<a :=1;>// ghost || <b :=1;> //ghost
{x==a+b&a==1} |{x==a+b&b==1}
{x==a+b&a==1&b==1}
Problem: {x ==2}
{X == O}
<xX:=x+1> Our approach:

Maintain abstract history of updates

{x==1}
unstable: assertions can be made invalid by other threads

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 56

A JAVA-LIKE PROGRAM

class Counter{
int data;
Lock I;

Client:

c = new Counter(0);

fork t1; //t1 calls c.increase(4);
fork t2; /12 calls c.multiply(4);
join t1;

join t2;

/[What is c.data?

resource_inv = exists v. PointsTo(data, 1, v);

requires true;
ensures true;
void increase(int {

\ Permission to
read and

update data

Needed:

l.lock(); // obtain PointsTo(data, 1, v); A specification of

data = data + n;

increase that

lL.unlock(); //loose PointsTo(data, 1, v + n); | Fecords the update
// now we don’t know anything about data anymore

}

UNIVERSITEIT TWENTE.

Reliable Concurrent Software 27/10/2016 57

COUNTER SPECIFICATION

class Counter{
int data;
Lock I;
//[resource_inv = Perm(data, 1);

/laction add(int n) = \old(x) + n; Record LOCAL

“changes in the history
requires H;

ensures H.add(n);

void increase(int n)}{
l.lock(); /* start a */ data = data + n; /* record a */ l.unlock();

}
}

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 58

Similar spec for multiply

COMPUTING THE FINAL VALUE

Global behaviour: Client:

dd(4).mul(4 1(4).add(4
add(4).mul(4) + mul(4).add(4) c = new Counter(0);

fork t1; //t1: c.increase(4);

Action specifications: fork t2; //t2: c.multiply(4);
//action add(int n) = \old(x) + n; join t1;

//action mul(int n) = \old(x) * n; join t2;

c.data ==4 || c.data == 16

Extensions /[What is c.data?

= Non-terminating programs
» Predicting behaviour
= Abstracting with larger granularity

» Reasoning about sequences of method calls
UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 59

UNIVERSITEIT TWENTE.

Reliable Concurrent Software

27/10/2016

60

ASSERTION INTERFERENCE

[Thread 1,

{ Thread 2
/4

A\
u assert) == 6 ; J

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 61

ASSERTION INTERFERENCE

[assert display1.getRounds() == display2.getRounds(); J

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 62

THE STROBE FRAMEWORK

= Speed up assertions

= Evaluate assertions on separate checker
threads

= Program continues execution

= Program can change during checks
= Take snapshot of the memory ‘
= Evaluate against snapshot A

Edward E. Aftandilian

Snapshot evaluation:
no assertion interference

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 63

ASYNCHRONOUS ASSERTIONS

Implementation
» Independent tasks
» Defined as futures

= Will never change the behaviour of the program

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 64

SNAPSHOT INTERFACE

Create snapshot

int preconditionld = Snapshot.initiateProbe();

Execute following statements on snapshot projection
currentThread.snapshotld = preconditionld;

Execute following statements on live state

currentThread.snapshotld = -1;

Destroy snapshot

Snapshot.completeProbe(preconditionid);

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 65

USING THE SNAPSHOT INTERFACE

public void addNode(Node node) {
int preconditionld = Snapshot.initiateProbe();
RVMThread currentThread = RVMThread.getCurrentThread();
currentThread.snapshotld = preconditionid;
assert !this.contains(node);k\ Assertion evaluated
currentThread.snapshotld = -1; over snapshot

Snapshot.completeProbe(preconditionld);

node.next = this.next;
this.next = node;
assert this.contains(node);

No assertion interference

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 66

AUTOMATED TRANSLATION WITH SNAPSHOTS

public void addNode(Node node) {

?@ﬂﬂf‘ﬁ?@gﬁ FrOftthread = RVMThread.getCurrentThread();
MHRAEYEE B985 ot initiateProbe();

currentThread.snapshotld = preld;
assert Icontains(node);
currentThread.snapshotld = -1;

Snapshot.completeProbe(preld); Assertion

evaluated in
snapshot state

Int postld = Snapshot.initiateProb
currentThread.snapshotld = postld;
assert contains(node);
currentThread.snapshotld = -1;
Snapshot.completeProbe(postld);
UNIVERSITEIT TWENTE. Reliable Concurrent Software ~ 27/10/2016

67

FUTURE WORK

= Static verification
= Annotation generation

» (Generalise abstraction idea (mixing concrete and abstract
specifications)

= Dynamic verification
After deployment
= Memory model aware runtime checking
» Data race detection and fixing
Before deployment

» EXxercising different executions

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 68

&

Saeed Darabi, Wojciech Mostowski,
Marina Zaharieva-Stojanovski,
Stefan Blom, Afshin Amighi, Wytse Oortwijn

Reliable Concurrent Software 27/10/2016

69

SUMMARY

= Software quality remains a challenge

» Classical Hoare logic-based techniques are becoming more and more
powerful

» Run-time assertion checking powerful extension of standard testing
= Next challenge: verification of concurrent software

= Separation logic and permissions

= Verification of functional properties

= Also run-time assertion checking has extra challenges when software
is concurrent

More information? Try Dafny this afternoon!
Want to try more
Go to: http://www.utwente.nl/vercors

UNIVERSITEIT TWENTE. Reliable Concurrent Software 27/10/2016 70

