	TU/e Hands-on
	BSR Winter School	2016

	Name:
	

	Company / Institute:
	

Software Process Mining Mini-Challenge (14 pts + 2pts bonus + 4 pts bonus)
In this hands-on session, you will investigate the behavior and performance of a software process, using its execution event log and the ProM Lite 1.1 toolset.
Our software process takes a csv file as input, and uploads it to Google Spreadsheets, using a web service API. The event log describes multiple runs of this software, for different input files; each run describes the methods executed in order.
[image:]

The structure of the question sheet should help you to find the basic solution. Feel free to add more content if you find more insights.
Log Investigation (4pts)
Before we discover a model, we want to get a feeling of what is inside the event log. Using the Dotted Chart visualization, what can you say about the event log?
Dotted Chart settings used: (1pt)
	X Axis Attribute:
	

	Y Axis Attribute:
	

	Trace Sorting:
	

	Color attribute:
	

What different type of traces (execution runs) do you see? What are the differences? (1.5pts)
	

	

What can you conclude from the distribution of events, and the rate of arrival? (1.5pts)
	

	

Model Discovery (5pts)
Using model discovery, we can now investigate the high level behavior of the software process. We want to get a model describing the high-level steps. In order to obtain a clear model, we want to focus on a specific subset of software interfaces. Filtering the log to only look at a subset of the methods usually helps.
Using Filter Log on Event Attribute Values and the Mine with Inductive visual Miner, can you describe the high level steps of the software process?
Which filter settings did you use? (1pt)
	

	

Which discovery settings did you use? (1pt)
	Activity frequency:
	

	Paths frequency:
	

	
	

Describe the high level model. Illustrate the main steps and annotate where necessary. (3pts)
	

Performance Analysis (3pts)
By combining the discovered model and event log, we can investigate the performance aspects of the software in context of the overall behavior. For each transition in the model, we can investigate the service time (the time to execute the method), the waiting time (the time between methods), and the sojourn time (service + waiting time).
Using the Inductive visual Miner, can you identify possible bottlenecks / performance issues in the software process?
Which setting did you use? (1pt)
	“Show” overlay:
	

At what steps / methods in the model is the most of the execution time spent? (2pts)
	

	

	

	

Software Process Improvement (2 pts)
Based on the analysis results you’ve gathered, what opportunities would you suggest for improving the implementation? And why?
	

	

	

	

	

	

[bookmark: _GoBack]Decision Mining (4pts bonus)
If you look at the end of your discovered model, you might notice the option to execute the printException() method. So far, we only discovered the possibility to do this step, but not when this happens. By logging and using some data variables in the software, we can try to find relations between data and choices, which might not be (explicitly) present in the source code.
Using the Inductive visual Miner, export your discovered model to a Petri net. Next, use the Discovery of the Process Data-Flow (Decision-Tree Miner) plugin on both the Petri net and filtered event log.
Hint: you want to check the “Variables considered” configuration setting, and lower the “Minimal fitness to consider a trace” setting to 0,5.
Which setting did you use? (1pt)
	Variables considered:
	

	Decision tree algorithm
	

What guards did you discover for the printException() method and the skip? (2pts)
	

	

	

	

Based on the discovered guards, what could you say about the cause of the exception? (1pt)
	
	

	
	

	
	

	
	

image1.png

