Exceptional Logging

Arie van Deursen
Delft University of Technology

BSR Winterschool, Ede, October2016

Big Software on the Run

HTTP Status 500 - javax.serviet.ServietException: 4

Lterproxy. java:344)

AAAAAA

Long running (d|5tr|buted) systems ,_
* All situations will occur
* All exceptions will fire

10W C
"1O0W C

10W C

How can logged exceptions be reproduced?

o developers deal with exceptions?
o exceptions end up in crashes and issues?
o exceptions manifest themselvesin log data?

2/

@,

| Error Handling and =
Type Checking — 1991 |

Centrum voor Wiskunde en Infom\h
1 REPORTRAPPORT

equations
_id should be a variable in inner block of Ei1 = E2, o ——
_id should not be a control variable in E2 = E3, T

-id should not be a possibly threatening variable in E3 = E4, '

mark-variable(_id, control-variable, E4) = E5,
var—-access-tc(_id, E5) = E6,
E6.result should be ordinal in E6 = E7,

expr-tc(_expri, E7) = ES8,
E8.result should be assignment-compatible with E6.result in E8

E9,

expr-tc(_expr2, E9) = E10,
E10.result should be assignment—-compatible with E6.result in E10 = Ei1

stat-tc(_stat, E11) = E12,
mark-variable(_id, , E12) = E13

stat-tc(|for _id := _exprl (Down)To _expr2 do _stat, E1) = E13

shanghai 2006

Discovering Faults in Idiom-Based Exception Handling

Magiel Bruntink Arie van Deursen Tom Tourwé
Centrum voor Wiskunde en Software Evolution Research Centrum voor Wiskunde en
Informatica Laboratory Informatica
P.O. Box 94079 EEMCS P.O. Box 94079
1090 GB Amsterdam, The Delft University 1090 GB Amsterdam, The
Netherlands Mekelweg 4, 2628 CD Delft, Netherlands

Magiel.Bruntink@cwi.nl The Netherlands Tom. Tourwe@cwi.nl

Arie.van.Deursen@cwi.nl

ABSTRACT

In this paper, we analyse the exception handling mechanism of a
state-of-the-art industrial embedded software system. Like many
systems implemented in classic programming languages, our sub-
ject system uses the popular return-code idiom for dealing with ex-
ceptions. Our goal is to evaluate the fault-proneness of this idiom,
and we therefore present a characterisation of the idiom, a fault
model accompanied by an analysis tool, and empirical data. Our
findings show that the idiom is indeed fault prone, but that a simple
solution can lead to significant improvements.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Reliability; D.2.5 [Software Engineering]: Testing and Debug-
ging—Error handling and recovery

General Terms
Design, Reliability, Verification

Keywords
Exception handling, fault model, program analysis

1. INTRODUCTION

A key component of any reliable software system is its excep-
tion handling. This allows the system to detect errors, and react
to them correspondingly, for example by recovering the error or
by signalling an appropriate error message. As such, exception
handling is not an optional add-on, but a sine qua non: a system
without proper exception handling is likely to crash continuously,
which renders it useless for practical purposes.

Despite its importance, several studies have shown that exception
handling is often the least well understood, documented and tested
part of a system. For example, [30] states that more than 50% of
all system failures in a telephone switching application are due to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi t or commercial advantage and that copies
bear this notice and the full citation on the fi st page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi ¢
permission and/or a fee.

ICSE'06, May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005 ...85.00.

faults in exception handling algorithms, and [20] explains that the
Ariane 5 launch vehicle was lost due to an unhandled exception.

Various expl i for this pher have been given.

First of all, since exception handling is not the primary con-
cern to be implemented, it does not receive as much attention in
requirements, design and testing. [26] explains that exception han-
dling design degrades (in part) because less attention is paid to it,
while [9] explains that testing is often most thorough for the ordi-
nary application functionality, and least thorough for the exception
handling functionality. Granted, exception handling behaviour is
hard to test, as the root causes that invoke the exception handling
mechanism are often difficult to g and a bi ial ex-
plosion of test cases is to be expected. Moreover, it is very hard
to prepare a system for all possible errors that might occur at run-
time. The environment in which the system will run is often un-
predictable, and errors may thus occur for which a system did not
prepare.

Second, exception handling functionality is crosscutting in the
meanest sense of the word. [21] shows that even the simplest ex-
ception handling strategy takes up 11% of an application’s imple-
mentation, that it is scattered over many different files and functions
and that it is tangled with the application’s main functionality. This
has a severe impact on und dability and maintainability of the
code in general and the exception handling code in particular, and
makes it hard to ensure correctness and consistency of the latter
code.

Last, older programming languages, such as C or Cobol, that do
not explicitly support exception handling, are still widely used to
develop new software systems, or to maintain existing ones. Such
explicit support makes exception handling design easier, by provid-
ing language constructs and accompanying static compiler checks.
In the absence of such support, systems typically resort to system-
atic coding idioms for implementing exception handling, as advo-
cated by the well-known return code technique, used in many C
programs and operating systems. As shown in [4], such idioms are
not scalable and compromise cor

In this paper, we focus on the exception handling mechanism of
a 15 year-old, real-time embedded system, developed by ASML, a
Dutch company. The system consists of approximately 10 million
lines of C code, and is developed and maintained using a state-
of-the-art development process. It applies (a variant of) the return
code idiom consistently throughout the implementation. The cen-
tral question we seek to address is the following: “how can we
reduce the number of implementation faults related to exception
handling implemented by means of the return code idiom?”. In
order to answer this general question, a number of more specific
questions needs to be answered.

The Error Linking Concern

e Proper error logging essential for
— Activating correct recovery procedure

— Making sure repair engineer can take proper
action upon crash

- Directly affects repair time, hence
uptime.

e Different error codes are linked back to
root cause

o Explicitly described “error linking idiom”

Fams o

P
Wy 5 TUDelft)

Error Linking

int queue add(CCQU queue *queue, void *item data,
int r OK;

if ((r OK) && (queue
r CCXA PARAMETER ERR;

ERXA LOG(r, O0);

(CCQU _queue *) NULL))

}

if (r OK) {
r PLXAmem malloc(sizeof (CCQU queue item),
if (r '= OK) {
ERXA LOG(r, 0);
ERXA LOG (CCXA MEMORY ERR,

r = CCXA MEMORY ERR;

r);

}

if (r OK) {
}

return r;

bool front) {

Initialization

{
Root error

Error logging
|

Skipping

(void **) &qi):;

Linking

Propagation

Error Linking Quality

e Fault model:

- Wrong error variable returned,

— assigned and logged value mismatch,
- not linked to previous value,

- omit guard, ...

e Can be identified using analysis of program
dependence graph

e For each path find out whether error value is
properly set, checked, logged and returned

o,

V‘Iy 7

1 _
TUDelft /

Fams o

Static Analysis in SMELL

/‘State A

Machine for
Error

Linking and
\Logging)

assigned-
constant

assigned-
unknown

assigned-

s

(/e
3 2 O R
TUDelft At

Violation reports

Violations Browser olations B

File Edit Functions

FSXA_fsm.c I

180
181
182
183
184
185
186
187 }
188
189 if
150 {

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

Violation 1 /9 for procedure FSXA_fsm_allocate
FSXA_fsm_allocate ~181 result-17: entry-state (0 and 0, 0 and 0) FSXA_fsm_allocate() =
FSXA state force state 11 result-17: assigned-ok-state (0 and 0, 0 and 0) result = 0K
— t_ransR;m ch;ck final state 130 result-17: assigned-ok-state (0 and 0, 0 and 0) if (result == OK)
= T - 140 result-17: assigned-ok-state (0 and 0, 0 and 0) (result == OK)
FSXA_transition_make_transition_and_unlock 147 result-17: assigned-ok-state (0 and 0, 0 and 0) if (result == OK)
FSXA_fsm_attach_process 177 result-17: assigned-ok-state (0 and 0, 0 and 0) if (result == OK)
FSXA_state_get_state 189 result-17: assigned-ok-state (0 and 0, 0 and 0) if (result == OK)
FSXA fem start 191 result-17: assigned-unknown-state (unknown and 0, 0 and 0) result = PLXAsemM_create()
o - 204 result-17: assigned-not-ok-state (unknown and 0, 0 and 0) if (result '= OK)else
FSXA_fsm_clez?r_deﬁnﬁlon 207 result-17: unallowed-assignment (unknown and 0, 0 and 0) result = FSXA_SEMAPHORE_ERROR
: : FSXA_add_region == assignment at line 207 overwrites value assigned at line 191
weE € T A e FSXA_transition_check_event_and_lock 191 result = PLXAsemM_create()
Hes | LAX2TES0T |&aE e FSXA_fsm_stop 207 result = FSXA_SEMAPHORE_ERROR
FSXA_state_check_state_is_active
sizeof (FS_vertex_struct); L
/* adding one extra state for root level state v FSXA_add_final_transition
FSXA_add_state

mem size += (size_t)allocate_ptr->nr_of_ regions * =iz e
— tEE_ —7r N FSXA_add_transition

mem_size += (size_t)allocate_ptr->nr of events v osiz

mem_size += (size_t)allocate_ptr->nr_of_ transitions * siz FSXA_add_final_state

mem_size += sizeof (FS_data_handle_struct); FSXA_add_initial_transition

(result == OK)

result = PLXAsemM create((PLXAsem id) key, &semhandle);

if (result == PLYA SEM EXISTS)

{ v o
/% overrule result error, but don't log since PL does 1 S —
result = PLXAsem gethandle((PLXAsem_id) key, &semhandlg 4 b4 ‘ »
if (result != OK) Previous Function | Previous Violation Dismiss Next Violation | Next Function
{

result = FSXA SEMAPHORE ERROR;
ERXA LOG(result, 0, ("SEMAPHORE_ERROR: PLXAsem gethandle failed"));
}

}

else if (result != OK)

{

/* semaphore cration failed */ F |

207
208
209
210
211
212
213
K [»]«]

result = FSYA SEMAPHORE ERROR;

ERXA LOG(result, 0, ("SEMAPHORE_ERROR: PLXAsemM create failed"));
}
else
{

/% QaC */

} -
| »

wi

CodeSurfer
File Browser

%
TUDelft

SMELL Evaluation

KLOC | Reported False Limitations | Validated

Deviations | Positives Deviations

CC1 3 32 2 4 26
CC2 19 72 20 24 28
CC6 15 16 0 3 13
CC4 14 107 14 13 80
CC5 15 9 0 3 6
66 236 (36) (47 (153
T T

15% 20% ~2/Kloc

~ﬂ&b 10

1 -_
TUDelft /

Fams o

Error Handling In Embedded C

* Exception handling through return code idiom
* Almost 10% of code base

e 2 faults per KLOC in just error handling code

* Incorrect logging affects repair time = uptime

e Static analysis can help to spot problems

static 0OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer
uint8 t *signature, UIntl6 signaturelen

{
0SStatus err;
if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 9)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 9)
goto fail;
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

12

static 0OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer

uint8 t *signature, UIntl6 signaturelen
{

0SStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 9)

goto fail;
= &hashCtx, &signedParams)) != 0)

goto fail;
goto fail;
if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 9)

~ e
BOCO TarIl,

fail:
SSLFreeBuffer(&signedHashes); ' 4
SSLFreeBuffer(&hashCtx); ‘

return err;

}

2014: Security vulnerability in error handling of Apple’s Secure Socket Layer code
http://avandeursen.com/2014/02/22/gotofail-security/ .

error INVALID_DATA_SIZE = 3;
error BUFFER_FULL = 1;
error NETWORK_DOWN = 2;

@errors INVALID DATA SIZE
boolean sendArray(int8 address, int8* data, intl6é dataSize) {

}

if (dataSize % 8 != 0) {
error INVALID DATA_ SIZE;
}
intl6 pos = 0;
intl6 index = ©;
while (pos < dataSize) {
message mMSg;
msg.index = index;

memcpy(data, msg.data, pos, pos + 8);

try {

intl6é bytesSent = sendMessage(address, msg);

pos += bytesSent;
index++;
}
when BUFFER_FULL {
// do nothing, implcitly retry
}
when NETWORK_DOWN {
return false;

}
}

return true;

[Language extensions
to the rescue? |

ENGINEERING
THE FUTURE OF
EMBEDDED
SOFTWARE

Boosting productivity and quality by
using extensible DSLs, flexible notations
and integrated verification tools.

mbeddr is a set of integrated and mbeddr has support for requirements mbeddr comes
extensible lan guages for embed ed and product line definition, soﬂware IDE including
[

integration and debugging.

Using C language extensions for developing
embedded software: A case study
Voelter, Van Deursen, Kolb, Eberle.

OOPSLA 2015. 14

T

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/yuan

This paper is included in the Proceedings of the
11th USENIX Symposium on
Operating Systems Design and Implementation.
October 6-8, 2014 - Broomfield, CO
978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Study Context

e 198 randomly sampled user-reported failures

5 data-intensive distributed systems
e Cassandra, HBase, HDFS, MapReduce, Redis

* Widely used, all designed for high fault tolerance

 Studied all failure reports

* Manually reproduced 73 crashes.

“Almost all (92%) of the
catastrophic system failures are
the result of incorrect handling of
non-fatal errors explicitly
signaled in software.”

Testing the Error Handler

in 58% of the catastrophic failures,
the underlying faults
could easily have been detected
through simple testing of error handling code.

Causes:

i. theerror handleris simply empty or only contains a
log printing statement,

ii. the errorhandleraborts the cluster on an overly-
general exception, and

lii. the error handler contains expressions like “FIXME”
or “TODO” in the comments.

EMPIRICA|

EMSE 2016

MSR 2015

Delft University of Technology
Software Engineering Research Group
Technical Report Series

Exception Handling Bug Hazards in
Android: Results from a Mining Study
and an Exploratory Survey

Roberta Coelho, Lucas Almeida, Georgios Gousios,
Arie van Deursen and Christoph Treude

Report TUD-SERG-2016-018

]
TUDelft SEY<

19

Why Study Exceptions in Android?

* Android is common

0.6

0.7
0.55
0.450'50
030 0.35
0.30.20 ‘
0.0 ‘ ‘
Aug Dec Feb May Jun Jul Dec Feb Jun Jul Sept
2010 2011

* App crashes are common

statista % ©&#Ss @O
The Statistics Portal

* Mix of platform, libraries, app

* For many apps source code available
* For many apps crash data available (issues)

The Java

Exception
Hierarchy

should not be caught
could be declared
irrecoverable errors

RuntimeException Checked Exceptions
NullPointerException IOException

IndexOutOfBoundsException SQLException

should be caught must be caught
could be declared must be declared
recoverable errors recoverable errors

21

Exception Propagation

. javax.servlet.ServletException: Something bad happened
Thrown exception at com.example.myproject.OpenSessionInViewFilter.doFilter
at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter
at com.example.myproject.ExceptionHandlerFilter.doFilter
«e. 22 more
Caused by: com.example.myproject.MyProjectServletException
at com.example.myproject.MyServlet.doPost
at javax.servlet.http.HttpServlet.service
at javax.servlet.http.HttpServlet.service
at org.mortbay.jetty.servlet.ServletHolder.handle
Wrapplngs at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter
at com.example.myproject.OpenSessionInViewFilter.doFilter
«+. 27 more
Caused by: org.hibernate.exception.ConstraintViolationException: could not
insert: [com.example.myproject.MyEntity]
at org.hibernate.exception.SQLStateConverter.convert
at org.hibernate.exception.JDBCExceptionHelper.convert
at org.hibernate.id.insert.AbstractSelectingDelegate.performInsert
at org.hibernate.persister.entity.AbstractEntityPersister.insert
... 32 more
Caused by: java.sql.SQLException: Violation of unique constraint
MY_ENTITY_UK_1: duplicate value(s) for column(s) MY_COLUMN in statement
[...]
at org.hsqldb.jdbc.Util.throwError
at org.hsqldb.jdbc.jdbcPreparedStatement.executeUpdate
at com.mchange.v2.c3p@.impl.NewProxyPreparedStatement.executeUpdate
at org.hibernate.id.insert.AbstractSelectingDelegate.performInsert
. 54 more 22

Root cause

Exception Handling “Bug Hazards”

1. Can the information available in exception stack
traces reveal exception handling bug hazards in
both the Android applications and framework?

a. Can the root exceptionsreveal bug hazards?
b. Can the exception types reveal bug hazards?
c. Can the exception wrappings reveal bug hazards?

Data extraction

Search GHTorrent and Google Code for android

@

°._0
2,542 repositories 788 repositories
589 with stack traces 183 with stack traces
482 after manual filtering 157 after manual filtering
31,592 issues 127,456 issues
4,042 with stack traces 1,963 with stack traces

6,005 issues with stack traces from 539 projects

Data Processing

539 projects:

 |dentify external libraries
(static byte code analysis)

* |[dentify custom (checked) exception types
(source code analysis)

6005 exceptions
* Extract stack trace using heuristics
* Check javadocs for thrown non-checked exceptions

Most Common Exceptions

_ Occurrences (%) | Projects (%) Mosé Common
ource
52 App

NullPointer 28

lllegalState 5 19 0S
lllegalArgument 6 22 OS
RuntimeException 5 19 0S

OutOfMemory 4 12 OS

26

Most faulty areas

Program logic 52
Resource handling 23
Security 4
Concurrency 3
Backward compatibility 4

Programming logic and resource handling account
for 75% of all exceptions

27

Most Common Types

L O
%
70

60
50
., 40
30
20
11,
|)

Runtime Error Checked Throwable Undefined
C O

Exception Interfaces

* 65% Runtime Exceptions?
* 4% programmatically thrown (79 cases)

* Not documented via “throws” signature
(except 1 case)

 Surprise finding: checked exceptions can go
undocumented too.

* (Gingerbread JNI method could throw checked
exception that was not documented)

Cross Type Wrappings

Root cause wrapping frequencies

160 o =
140
120
100
| 80 0
60
40

20

0 03

Runtime Runtime Checked Checked

Checked Error Runtime Error

Checked

B m

Error Error

Runtime

30

The 50% case:
Checked to Runtime

Runtime exception wrapping a checked exception

No need to throw
,/// RunTimeException

void foo() throws IOException “{
try {
throw new IOException("Error");
} catch (Exception e) {
throw new RuntimeException("Error");

}
}

31

The 22% case:
Error to Runtime (dangerous)

Runtime exception wrapping an Error

void foo() {
try {

} catch (AppSpecificException e) { OutOfMemory caught
} catch (Throwable t)«f”””*’ﬂfﬂﬂfﬂ

throw new RuntimeException("Error thrown")

}
}

32

Other Error-Related Wrappings

Runtime Exception wrapping an Error

java.lang.RuntimeException - java.lang.OutOfMemoryError
java.lang.RuntimeException - java.lang.StackOverflowError

Checked Exception wrapping an Error

java.lang.reflect.InvocationTarget Exception - java.lang.OutOfMemoryError
java.lang.Exception - java.lang.OutOfMemoryError

Error wrapping a Checked Exception

java.lang.NoClassDefFoundError - java.lang.ClassNotFoundException
java.lang.AssertionError - javax.crypto.ShortBufferException

Error wrapping a Runtime Exception

java.lang.ExceptionlnlnitializerError - java.lang.NullPointerException
java.lang.ExceptionInlnitializerError - java.lang.lllegalArgument Exception

33

Android Exception Handling: Findings

* Programming mistakes common cause:

* 50% of reported stack traces
* Null pointer exceptions most prominent (27%)

 Java Errors are wrapped in (checked) exceptions
* E.g.: OutOfMemory wrapped in checked exception

* Thrown RuntimeExceptions are not documented
* Occurin 4.4% of traces

* Undocumented checked exceptions occur:
* raised by native C code, not declared in JNI interface

Do Android Developers Agree?

a. How do Android devs deal with exceptions?

b. How do NullPointerExceptions impact Android
development?

c. How do cross-type wrappings impact Android
development?

d. Are developers aware of JNI's undocumented
checked exceptions? [Answer: no |

e. How do developers prevent apps from crashing?

Experimental Setup

* Questionnaire to devs of Android apps under study
* General exception handling policies
* Bug hazards identified in our study

* 13 open questions, 5 Likert Scale questions, 10
multiple choice questions

* Emailed 1824 devs; received 71 valid responses
* 85% over 2 years of Java and Android experience

* Open answers coded by two researchers

Dealing with Exceptions

Most of the time Some of the time Seldom Never

Need to throw an exception

Most of the time Some of the time Seldom Never

64.79% 30.99% !I 1.41%

Need to handle an exception

Exception Handling Best Practices

Top Java EH Best Practices # Y
Use specific handlers / don’t catch generic exceptions 9 23%
Don’t swallow Exceptions 7 18%
Don’t throw Runtime / Favor Checked exceptions 4 10%
Do not use exception for normal flow control 4 10%
Free Resources in finally-blocks 4 10%
crash fast 3 8%
crash report tools 2 5%
Don’t catch Errors 2 5%

38

“Android destroys and recreates itself all of the time
(especially during screen rotation).
If you do not handle that it will crash on you every time.

With the complexity of
an activity with a fragment that has fragments and
each of those fragments has custom objects and variables
that need to be retained (so saved and put back)
or recreated such as views
it can get complex

if you don’t have an understanding of
how the Android life cycle works.” [D43].

2b. Dealing with Null Pointers

Top Ways of Preventing NullPointerExceptions # Y
null-checks 36 59%
investigate/fix the cause 24 39%
@Nullable @NotNull 8 13%
catch null-pointer (mistake) 3 5%
initialize /use default variable 3 5%
new control-flow for null 3 5%
avoid using nulls / avoid to use methods can throw null 2 3%
static analysis 2 3%
automated testing 1 2%

40

“NullPointerExceptions can happen
pretty much anywhere.
The Android Fragment system comes to mind.

Often, it is possible to find yourself in a state
where getActivity() is null within the Fragment
during certain points in the life cycle,

and that is something I have to plan for.”
[D56]

Determine why the object was null and
attempt to fix this situation.

In the case of external API calls
which return null,
then check for null (the quick-and-dirty way).

For internal calls,
use (WNotNull and @Nullable annotations

to provide more guidance on when an object
“may be” and “should never be” null.” [D42]

2c. Dealing with Wrappings

Top Reasons Why Cross-Type Wrapping Affect Robustness # %
impairs proper handling (loses exception information) 12 24%
uncaught will crash the app 12 24%
app will crash anyway 9 18%
should catch / handle properly (do local recovery) 5 10%
treat all exceptions as critical 5 10%
useless rethrow 2 4%
activity methods cannot throw exceptions 1 2%

43

“Honestly, there are a lot of very unskilled Java
programmers out there writing Android apps.

When they encounter NPE,
they tend to null-check that variable,
which just puts a bandage on the problem
and causes other failures (usually also NPE's)
later on in the application's lifecycle.” [D42]

The Android framework is what adds the
complexity in figuring out
what caused an exception.

Because more often than not,
the error is triggered from the framework
as a result of something else you did.”

[D58];

Fault Sensitive Areas

rank 1 | - L

rank 2 NN PR |

rank 3 (110
rank 4 [l
rank 5 ATAAIE
rank 6
rank 7 N A

0;% 16% 20% 3(;% 40% 50% 60% 7(;% 80% 90%

B Programming logic mistakes (e.g. NullPointerException) W Security

Resource problems (10, Memory, Battery) ® Concurrency
N Application-specific exceptions Backward compatibility

General exceptions (Error, Exception, Runtime)

100%

Exception Handling in Android

* Developers are struggling with Java’s exceptions

* Checked exceptions give a false sense of safety
* Undocumented runtime exceptionsare common too

* Programming errors are a main cause of exception-
based crashes

* Exception handling is an architectural concern:
* Needs to be consistentacross componentsand libraries
* Chainsofinconsistentwrappingshamperunderstandability

Logness

Mining Log Data for Relevant Exceptions

Joint work with Peter Evers (TU Delft)
Mauricio Aniche (TU Delft)
Maikel Lobbezoo (Adyen)

. Founded in 2006

. 6" Unicorn Startup in Europe
(over $1 billion venture capital)

. Payment Service Provider

. Enables merchants to accept payments from
anywhere in the world

. 450 people in 10 countries

49

Logging at Internet Payment Scale

. Around 500 million log messages per day
. Around 500,000 warnings / errors per day

. > 100 GB log data per day

. Sensitive data logged in encrypted form

Monitoring

. Weekly release cycle

fferent monitors and custom alerts in place

SOURCEADDRESS DESTINATIONADDRESS DESTINATIONPORT
400000

e =%

—_— o

) &7 e e @ 40748(14) © 40334 (11) © 40455(10) © 49380 (10) 40333 (10) 40253 (10) 56533 (9) (316604) ® 5625T) (@S ® 43 (218248) © 20(S50257) @ 25(BS81) ® 22(2070) 003 (2789) 143 (2018)
(1971) 1608) 40001(9) ® 40830(9) ® 40538 (9) (3076) €
(1145 ® ®7n

219) 405(12) © B1189(1) © 52585(1)

400000

TOTAL BYTES PER SESSION o o % x BYTES SENT PER SESSION o o % x BYTES RECEIVED PER SESSION o o 4 x
| | @ HTTP (56362) @ HTTPS (318220) @ 485 (488) © MAP4 (2015) @ SMTP (31240) © FTP (43358) (41201) | | @ HTTP (56382) @ HTTPS (318220) @ 465(468) © MAP4 (2015) @ SMIP (31240) © FTP (43358) & SSH(41201) MAPY (2015) @ (31240) & FTP (43356)

@ 903 (3173) Bytes bl per Sen | (499124 hits) @ 003 (3173) BytesSent total per Sm | (499134 hi)

awe

SSH(41201)
e

m @ 2015-05-06 20.35.:00

APPLICATION TREND APPLICATION HITS x

@ e @ HTTP (58353) @ HTTPS (318220) @ 485(488) & IMAPY (2015)
SSH1201) @ (173
]

@
] o=
=]

® SMIP (31240) FTP (42358)

51

Log Data Analytics: The ELK stack

>E>H> =

logstash

Image credit: www.neteye-blog.com

~all APPTRACK Search

© apptrack_status=APPTRACK_SESSION_CREATE

time must
field : @timestamp
from : now-24h

to: now

HISTORY
»View | @ Zoom Out | @ Create (1513068) count per 10m | (1513068 hits)
15000

10000

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
01/28 01/28 01/29 01/29 01/28 01/28 01/28 01/28

“ PROTOCOLS O & Xx TERMS

&
m @ junos-http (637076) @ junos-https (389881) @ junos-dns-udp (255511) @ None (124013)
Junos-winframe (44482) ® junos-ldap (14974) icmp (12231) Junos-dns-tcp (10711) junos-smb (6136)
@ junos-smtp (5155) Other values (12906)

ALL EVENTS

©

@timestamp v » 4source_ip»
2014-01-30T14:38:50.000+11:00 10.32.5.99
2014-01-30T14:38:50.000+11:00 10.22.113.42
2014-01-30T14:38:50.000+11:00 10.22.16.250
2014-01-30T14:38:50.000+11:00 1022.2.38
2014-01-30T14:38:50.000+11:00 1022.2.38
2014-01-30T14:38:50.000+11:00 1022.2.38
2014-01-30T14:38:50.000+11:00 10.200.22.75

2014-01-30T14:38:50.000+11:00 10.200.22.75

http://ifconfig-a.com/?p=8

23:00
01/29

SOURCE IP

FILTERING ~

05:00
01/30

o

©10.200.22.75 (148769) @ 10.22.2.38 (146608) @ 10.22.2.37 (75788) @ 10.32.5.99 (67955)

10.200.22.18 (64128)

10.22.124.11 (16904) @ 10.22.113.30 (15306)

175000

10.22.2.16 (23671) 10.22.112.21 (21849) 102234 (17152)

150000

125000

100000

75000

50000

4source_port»

54330

64735

50093

60371

60949

61303

63061

47272

0 to 100 of 500 avallable for paging
4dest_Ip»
1R 1
TR TN

[LB L]

C e T
P
1022254

1022.2.51

<dest_port»

0

02:00 03:00 04:00
01/30 01/30 01/30

07:00
01/30

250000

200000

150000

100000

4protocol »
junos-https
junos-http
junos-https
Junos-dns-udp
junos-dns-udp
junos-dns-udp
None

None

a day ago to a few seconds ago v L

08:00 09:00 10:00 11:00
01/30 01/30 01/30 01/30

© & X HISTOGRAM

12:00 13:00 14:00
01/30 01/30 01/30

® & X TERMS

TH AN (216110) @ WATUEE 17074 (67345) @ 1022237 (64473) @ 10.22.2.41 (56064)
.72 (34493) 1022252 (27737) ©10.22.2.51 (27492) @ 283 ¥+ 'L (25936)
1022255 (19955) @ 10.22.2.54 (18684)

<apptrack_status

APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE
APPTRACK_SESSION_CREATE

APPTRACK_SESSION_CREATE

® & X TABLE

'/ * /4

In practice: -t7, grep

L e i ——— p cm— A B e —— - vl - ——- rvice SAe saption (s @y v oFre fadt B wadt tere
o

Ui et e T age el e ey e it o e e Aegat Gema Ead
—-Du\"u.-h~ms¢--1w~—-| (W Sracoseari i) Prbien Aol 1oy S e ucptin (avid WA e WrvAce WAt eaptien \s Wy cubhaa oire falt Wireedt s
v — - - Rttt

-t L
- Ld w -) [el _styer
o) wwed otron p
Wpor i = - ST o~ 1) -
——.. - - - e O (- o) Mapped altan [1ive adver com
oy - - - e e .
Sor 1. - - e (e -
W - - (o)
e 3o - et el -0
f—t11 - - Y (e ~-2)
— - - - e (e .
- - e (e »

(e (il -

—————). - — e e
-onuu..—— |-¢.—.-a—--\--—m (W Srmcnseer M) Seceiens cwmest S £33 430 % 3 u————.-——.l-ﬂ—“—tm‘m-.—mmum
et ereced) WN N - P -, . - .

-

- .
| -
] -~
\ -
-
el el -) W aureenion (DNED) Wit smtewns |+ ()
20500 B0 I (o e W ——— (— | —— -} Vo orwies (D] o ety ()
2 1% B w0 t:.- M) W cwrvencien ([R]) wvh comtrens ¢ ()
9 1% WA e - Bt (V— | o) b e e (A @0 -t
el - M) W o r-’)n-——.—.]
290295 100 D0 foum adtyen O ———— (| ——. - viva) for e (D)) wtn et
i - - mlvw-‘(—n--mn (W OWAL) (I prmviine by oon
1 for et sl N 6 S et e o B8 0
A2NR N IO (e ity - e () -w o}
Bl (0 Pni) b S v | —)o-_-—-u(-n—u s 0
D929 11 N8 W IO (oo sy st | (P Pracenser) Won (L M) (e e o
D29 11 NR W TN (oo st e e - ‘
2029 LI NN DD (cwm adye et Cmmarviet . e .
200529 1255 1000 WO fum by ot imn OF Prcwnser) T (o M) Commtrwane. al e -.-———n--.-_-
e el e] v-)w--\-u-n..—.—- "]
D% LA M DO (oo e i (% SrwconsarLI) et ww' oo mtw wiine) S wvencion ([1) soh comtruions © 0
el i rmcan) o currencion (DY) won semnrsions | 0}
DR DN A1 00 e DD e iy . P (Pt AN) P e ([DE]) enh cmewens ()
el e O ——— (VASY W) S Corvencian ([WH]) W cmetewiees ()
el ok R - m_xu-cm .
9L D A D (e by S— — ~ oy
PRI 7 et >~ yorsy vt
e - S
I A S WA T - e .
DO 29 A2 0 I TN [by Sr—" v— -) (v) . a—. -y
B I G 74 - ——
o/ ——— I
-
D529 1253 MIN DD feem atyen. Paymrterudn 1] (- Srceser W) Srad ayl vcltie WPt (e - dee) e cwrvescies ([E]) eh cmeeeeens ()
e (W Srmceasarnl) Seceiend Swaet Sou B35 I 1 . . . e
. et e ad W W W e St . . .
u (T Sremsarsl) enting cwme -

—— T

oy e N7 B

— -

e e A T

e R

Ll S MITEE

st o

0] e WA L Pungerpr ot (AGIBLAEBEA0ALINI N CABAY I L WANE) TeAlT)
R

=

Rl e T

oy e
PRI R
O el

e are

54

The Problem

. Small problems are easily missed
. Monitoring is done on one server at the time

. Requires domain knowledge about (almost)
everything

. Hard to distinguish ‘normal’ from ‘severe’ errors
. Alert triggers are created by hand
. Developers are human and make mistakes

Proposed Solution: Logness

. Use fingerprint-based algorithm to combine
error logs into abstract errors

. Ask devs to rate abstract errors (severe,
monitored, non-severe)

. Filter, and focus on differences before and after
(weekly) patches

. Implement on top of ELK stack

rror Grouping Algorithm

Return
Fingerprint

Log

Fingerprint
Exists?

No

Warning /w
exception or
Error?

Filter Digits

Filter Hashes

LCS on all
Fingerprints
with the same
classname,
app and exc

Fingerprint
70% Equal?

Return
Fingerprint

Fingemrint Return
Exists? Fingerprint

Create New
Fingerprint

57

Original Kibana display:

severity: WARN OR severity: ERROR Search Reset 12,1 45,336

hits
P rss A export & stream &

2016-09-01 12:51:33 |to 2016-09-08 12:51:33 | grouped by | auto =
250000
%ggggg I doc_count per 1h
100000
oo Ittt sl
12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00
9-1 g-2 9-2 9-3 8-3 S-4 S-4 8-5 9-5 8-6 8-6 -7 9-7 S-8 S-8

Filtering by Logness, with actual problem found

classnamc:mr\m (severity: WARN OR severity: ERROR) AND (extra: **java.io.IOException®* OR message: *java.io.IOException®") Search Reset

688,152 nits
P rss N export & stream @
2016-09-01 12:51:33 to| 2016-09-08 12:51:33 grouped by | auto v
60000
40000 - MM doc_count per 1h
i
oo 1t -t -t + 4 A 1 (||| |
12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:00
91 9-2 9-2 9-3 9-3 8-4 8-4 9-5 9-5 -6 8-6 9-7 9-7 9-8 9-8

58

Ll Server Statistics

160 a
Q Show all
140
120

100

40 /\
\

T T T T T T T T T
14:00 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 9

T severe monitored

unknown

Ll Top Issues In Frame

App Classname Exception #Times Last Seen First Seen AStatus
search
(] recharge E:‘:":gyr::a‘zz"ices'reCharge'Re(hargesemce java.lang.StringIndexOutOfBoundsException 6 17 minutes ago 4 days ago o
O pal Ei’::::ﬁ:;‘:';:ﬂ?;‘:ﬁ’ﬁi’t:f:}in - javax.crypto.BadPaddingException 5 3 minutes ago 4 days ago o
] ReportProcessorjob E:zﬁ::z::;r; Gl “::;:;:?:;:: com.adyen.framework.reporting.spreadsheet.SpreadSh... 4 4 minutes ago 4 days ago o
1 hpp m java.lang.NullPointerException 2 an hour ago 4 days ago 0
] recharge i:';";’nday;”a'g"ECharge'REChargeum com.adyen.util.exception.DbException 5 20 minutes ago 4 days ago ?
] PalQueueProcessorjob szﬂéidxiz?:::sor‘queue.QueueProcessor com.adyen.services.common.ServiceException 2 an hour ago 4 days ago ?

Details

app recharge
classname com.adyen.services.recharge.RechargeService
reason java.lang.StringindexOutOfBoundsException
message Caught throwable:
hosts S ———
#times 6 in current frame
last seen 5 minutes ago
first seen 4 days ago
description Fraud attempt, needs fix to prevent exceptions. Assigned to @silvio
16
14
12
10 l
2 l
o 8-
>
w
il _
| [‘
N I J\ A
/
“ ™ l } f (
| |
2 4+ \ S N— _-/’) [/
| — —— 1
0 T T T T T T T T
Sep 30 12:00 Oct 01 12:00 Oct 02 12:00 Oct 03 12:00

60

Implications Logness

. Solved 9 different issues during development,
including critical ones (hotfixes during a patch)

. Mainly by visualizing logs in a more structured
way

. Developers are more aware and can quickly
investigate errors on ‘their’ application

61

Bug Example

. China Released New Creditcard Numbers

. Starting with 95 ...

. Being 19 digits long

. Are stored as a LONG because of the ISO
CO5TTTTTTIT111111111111 is a LONG overflow

. Impact: ... 4 people / month ... at the moment

Logness: Summary

. Hundreds of thousands of errors and warnings
in logs

. Group into common errors

. Focus on differences before/after patch
. Classify severity (machine learning)

. Visualize using Kibana

. Proven useful to find range of actual problems.

Part 4: Crash Reproduction

Evolutionary Testing for Crash Reproduction
[] f d Mozhan Soltani Annibale Panichell Ari D
Assume we found a Dl e o ectocy Dol s ey 8 eieeiogy Dall ity o ety
The Netherlands The Netherlands The Netherlands

mozhan.soltani@gmail.com a.panichella@tudelft.nl Arie.vanDeursen@tudelft.nl

b ABSTRACT the crash time, which may reduce the applicabili
I n t e re S t Manual crash reproduction is a labor-intensive and time- 9. Ree “:hlc?]] o Tcml":hb.w (;n \;s'mg o N h: "
L consuming task. Therefore, several soluti have been pro- 9] Record-replay approaches apply dynamic mechanisms

to monitor software executions, thus, leading to higher per-
formance overhead |1, 8. STAR (3] and MuCrash [11] a;
two novel approaches designed to deliver test cases that can
reproduce target software crashes by relying on crash stack
traces. C:TAR relies on backward symbolic execution to com-
pute the crash triggering precondition [3|. However, infer-
ring the initial condition of certain types of exceptions may
be a complex task to accomplish by STAR. On the other
hand, MuCrash applies mutation to update existing test
cases to reproduce crashes [11]. While MuCrash can also

re for automatic crash reproduction

mbolic execution and muta-

tion anal, However, various limitations adversely affect

the capabilit s of the existing solutions in covering a wider

use generating helpful tests that trigger
spccnﬁc (*xcmuo“. pat particularly challenging.

In this paper, we propose a new solution for automatic
crash reproduction based on evolutionary unit test genera-
tion techniques. The proposed solution exploits crash data
from collected stack traces to guide search-based algorithms , S - N

. toward the generation of unit test cases that can reproduce reproduce certain crashes that STAR can reproduce, it fails
O W C a n We the original crashes. Results from our preliminary study on to reproduce certain other crashes “b ich are r(‘prodn(‘ ble

real crashes from Apache Commons libraries show that our by STAR. As reported by Xuan et al. [11], the major reason

for this failure is that reproducing those crashes r requires fry

solution can successfully reproduce crashes which are not
nen . san not ' .d by directly
reproducible by two other state-of-art techniques. quent method calls which can not be recreated by directly

]
r e r O d C e I t S O t h a t applying mutation operators.
| l In this paper, we propose a novel approach for automatic
p K(:y words crash reproduction through the usage of evolutionary search-

Crash Reproduction, Genetic Algorithm, Search-Based Soft- based techniques, and crash stack traces. We imp!
ware Testing, Test Case Generation our solution as an extension of EvoSuite [4], and evaluated it

L] (]
We C a n fl X I t ? on well-known crashes from the Apache Commons libraries.
° 1. INTRODUCTION The main contributions of our paper can be summarized as

pased in lit

mented

PR . . follows:
Debugging is the process of locating and fixing defects
in software source code, which re deep understanding o We provide a first formulation of stack-trace-based crash
about that code. Typically, the first step in debugging is replication problem as a search-based problem:

to reproduce the software crash, which can be a non-trivial,

. labor-intensive and time-consuming task. Therefore, sev- We define a novel fitness function to evaluate how close
eral automated techniques for crash reproduction have been the generated test cases are to replicate the target
proposed, including the use of core dumps to generate crash crashes relying on stack traces only:

reproducible test cases [6, ord-replay approaches 1, 8,
](] post- fd lurc approa: . and approaches based on

test case to avoid it
from now on?

We report the results of a preliminary study which
shows the effectiveness of our solution compared to
STAR and MuCrash.

pact their capabiliti The rest of the paper is structured as follows: Section 2 pro-
For example, S and ov w on existing approaches on crash replica-
ications at tion and provides background notions on search-based soft-

ware testing. Section 3 presents our approach, while Section
ibes our preliminary study. Finally, conclusions and
future work are discussed in Section 5.

generating crash reprodu

work for persoaal o 4 des
made ce distributed

2. BACKGROUND AND RELATED WORK

. In this section, we describe the two main related tech-
SBSTI6, May 1&17 2016, Austin, TX, USA niques for automatic crash reproduction, namely STAR (3]
4500-4166- Y1605, $15.00 and MuCrash [11]. In addition, we provide an overview on

2016 ACM. ISBN 978.1.45
DO Bttp:, 897010.2897015 search-based software testing and Genetic Algorithms.

Jdx.dol.org/10.1145)

~—
Simple Testing Can Prevent Most Critical Failures:

An Analysis of Production Failures in Distributed
Data-Intensive Systems
Luo, Xin Zhuan, il e Renna Rodri

Crash Reproduction:
Feasibility

e 74% of the failures are deterministic: guaranteed to
manifest given the right input event sequences.

* 76% of the failures print explicit failure related error
messages.

* For majority (84%) of failures, all triggering events are
logged.

* A majority of the production failures (77%) can be
reproduced by a unit test.

e [et’s gutomate this.

Anatomy of a Stack Trace

TargetCrash
Bug Name: ACC-48

Library: Apache Commons Collection

Stack Trace

java.lang.lllegalArgumentException:

org.apache.comm®ns.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:142)

org.apache.comm#ns.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127)

org.apache.commg$ns.collections.map.AbstractLinkedMap.<init> (AbstractLinkedMap.java:95)

org.apache.commgns. coIIectlons map.LinkedMap.<init> (LinkedMap.java:78)
. he. f

. . . . a:153)
org. apache commbpns. coIIectlons map TransformedMap putAll (TransformedMap Java: 190)

Exception Name Root Cause of the Exception

https://issues.apache.org/jira/browse/COLLECTIONS-48

Anatomy of a Stack Trace

TargetCrash
Bug Name: ACC-48

Library: Apache Commons Collection

Stack Trace

java.lang.lllegalArgumentException:
org.apache.comm®ns.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:142)
org.apache.comm#@ns.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127)
org.apache.comm@ns.collections.map.AbstractLinkedMap.<init> (AbstractLinkedMap.java:95)
org.apache.commgns.collections.map.LinkedMap.<init> (LinkedMap.java:78)
org.apache.comm#ns.collections. map'r nsformedMap.transformMap (TransformedM.'ava 153)
org.apache.comm#®ns.collections.map.fransformedMapjputAll (TransformedMapJava:

_ Line to reach
Exception Name

Method Under Test
Class Under Test

https://issues.apache.org/jira/browse/COLLECTIONS-48

67

Genetic Algorithms

Genetic Algorithm: search algorithm inspired be evolution theory

LAMARCK'S GIRAFFE

Original
short-necked

ancestor

and stretching
until neck
wcomes

R e g oy) progressively
Keeps stretching and fonges

neck to reach stretching

leaves higher .
up on tree 5 J
P 3 .
.\', v > ,- .4 ~
o ™
: ‘ 1

) \
:.h 2 ,\“u-

Driven by inner “need”

1. Natural selection: Individuals
that best fit the natural
environment survive (worst die)

2. Reproduction: survived
individuals generate offsprings
(next generation)

3. Mutation: offsprings inherits
properties of their parents (with
some mutations)

4. lteration: generation by
generation the new offspring fit
better the environment than
their parents

Automated Test Case

Generation

Generation of test cases
1. Select one statement (target)

2. Using genetic algorithm to search for
method calls and input parameters
that allow to cover the selected target

3. Store the test case

4. Repeat steps 1-4 until all statements
are covered

|Goal-oriented
lor
Single-target

Genetic Algorithms

Initial Po)ulation

Selectior

Crossov(r

Mutation

\.‘

o~
.\0

!‘.

EVa=SUITE

* Tool to automatically generate JUnit test suite using
genetic algorithm

* Generate and optimize test suite to work towards
satisfying a given coverage criterion

* Generate assertions concisely documenting current
behavior (oracle)
* To test future versions that should keep this behavior

‘ /4 l
kil | :
¥ 1 "//, |

Fitness Function

Main Conditions to Satisfy
1) the line (statement) where the exception is thrown has to be covered

2) the target exception has to be thrown
3) the generated stack trace must be as similar to the original one as possible.

(2)

T Target Stack Trace

| rqu ion:

org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:142)
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127) I (3)

org.apache.commons.collections.map.AbstractLinkedMap.<init> (AbstractLinkedMap.java:95)

f(l) = 3 x line_coverage + 2 x exception_coverage+trace_similarity

(1) (2) (3)

71

Fitness Function

f(l) = 3 x line_coverage + 2 x exception_coverage+trace_similarity

(1) (2) 3)

1) line_coverage = approach_level + branch_distance

Target Stack Trace

java.lang.lllegalArgumentException:

org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java: 142)
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127)
org.apache.commons.collections.map.AbstractLinkedMap. <init> (AbstractLinkedMap.java:95)
org.apache.commons.collections.map.LinkedMap. <init> (LinkedMap.java:78)
org.apache.commons.collections.map.TransformedMap.transformMap (TransformedMap.java: 153)
rg.apache.commons.collections.map.TransformedMap.putAll (TransformedMap.java:190);

72

Fitness Function

f(l) = 3 x line_coverage + 2 x exception_coverage+trace_similarity

(1) (2) 3)

1) line_coverage = approach_level + branch_distance

2) exception_coverage =0if the target exceptionin thrown; 1 otherwise

Target Stack Trace

ﬁfva.Iang.IIIegaIArgumentException:]
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java: 142)
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127)
org.apache.commons.collections.map.AbstractLinkedMap. <init> (AbstractLinkedMap.java:95)
org.apache.commons.collections.map.LinkedMap. <init> (LinkedMap.java:78)
org.apache.commons.collections.map.TransformedMap.transformMap (TransformedMap.java: 153)
org.apache.commons.collections.map.TransformedMap.putAll (TransformedMap.java:190)

73

Fitness Function

f(l) = 3 x line_coverage + 2 x exception_coverage+trace_similarity

(1) (2) (3)

1) line_coverage = approach_level + branch_distance
2) exception_coverage =0if the target exceptionin thrown; 1 otherwise

3) trace_similarity = class name, method name, triggeringline

Trace Elements
Target Stack Trace

java.lang.lllegalArgumentExcention. :
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java: 142)
org.apache.commons.collections.map.AbstractHashedMap.<init> (AbstractHashedMap.java:127)
org.apache.commons.collections.map.AbstractLinkedMap. <init> (AbstractLinkedMap.java:95)
org.apache.commons.collections.map.LinkedMap. <init> (LinkedMap.java:78)
org.apache.commons.collections.map.TransformedMap.transformMap (TransformedMap.java: 153)

'org.apaclie.commo‘ns.coIIeEﬁons.map. Iranslormeﬂl“lap.pufml i [ransforme ap.Java:190)

74

Empirical Evaluation

Context: 10 real bugs from Apache Commons Collections

ACC-4 2.0 NullPointer Major

ACC-28 2.0 NullPointer Major Used in:

ACC-35 2.0 UnsupportedOperation Major .

ACC-48 3.1 IllegalArgument Major N. Chen and Kim, TSE 2015.
ACC-53 3.1 ArraylndexOutOfBound Major J. Xuan et al., ESEC/FSE 2015.
ACC-70 3.1 NullPointer Major

ACC-77 3.1 IllegalState Major

ACC-104 3.1 ArraylndexOutOfBound Major

ACC-331 3.2 NullPointer Minor

ACC-377 3.2 NullPointer Minor

Experimented algorithms:

- EvoSuite + our fitness function (30 independent runs)
- STAR (Symbolic execution)

- MucCrash (Mutation analysis)

75

Results

Bug Z’ei‘:iccf:;:‘“' STAR MuCrash
ACC-4 30/30 YES YES
ACC28 [30/30 YES YES
ACC35 [30/30 YES YES
ACC-48 [30/30 YES YES
ACC53 [28/30 YES NO
ACC-70 [30/30 NO NO
ACC-77 |30/30 YES NO
ACC-104 |0/30 YES YES
ACC331 |10/30 NO YES
ACC377 |0/30 NO NO

76

Results

Bug ID ?;‘I'icciet?::‘“' STAR MuCrash
ACC-4 30/30 YES YES
ACC28 |30/30 YES YES
ACC35 |30/30 YES YES
ACC-48 |30/30 YES YES
ACC-53 |28/30 YES NO
ACC-70 |30/30 NO NO
ACC-77 |30/30 YES NO
ACC-104 |0/30 YES YES
ACC-331 |10/30 NO YES
ACC377 |0/30 NO NO

Our solution
replicated 8/10 bugs

STARreplicated 7/10
bugs

MuCrash replicated
6/10 bugs

77

ACC-70

Target Stack Trace

Exception in thread "main" java.lang.NullPointerException at
org.apache.commons.collections.list. TreeList$TreeL istlterator.previous (TreeL.ist java:841)
at java.util.Collections.get(Unknown Source)

at java.util.Collections.iteratorBinarySearch(Unknown Source)

at java.util.Collections.binarySearch(Unknown Source)

at utils.queue.Queue Sorted.put(QueueSorted.java:51)

at framework.search.GraphSearch.solve(GraphSearch.java:53)

at search.informed.BestFirstSearch.solve(BestFirstSearch.java:20)

at Hlavni.main(Hlavni.java:66)
T ——————————————————————————————————

78

ACC-70

Target Stack Trace

Exception in thread "main" java.lang.NullPointerException at
org.apache.commons.collections.list. TreeList$TreeL istlterator.previous (TreeList java:841)
at java.util.Collections.get(Unknown Source)

at java.util.Collections.iteratorBinarySearch(Unknown Source)

at java.util.Collections.binarySearch(Unknown Source)

at utils.queue.QueueSorted.put(QueueSorted.java:51)

at framework.search.GraphSearch.solve(GraphSearch.java:53)

at search.informed.BestFirstSearch.solve(BestFirstSearch.java:20)

at Hlavni.main(Hlavni.java:66)

Test generated by our solution

public void test@() throws Throwable {
TreelList treelList® = new TreelList();
treelist@.add((Object) null);
TreelList.TreelListIterator treelList_TreelListIterator® = new
TreeList.TreelList]
// Undeclared exception!
treelist_TreelListIterator@.previous();

79

ACC-70

Target Stack Trace

Exception in thread "main" java.lang.NullPointerException at

at java.util.Collections.get(Unknown Source)

at java.util.Collections.iteratorBinarySearch(Unknown Source)
at java.util.Collections.binarySearch(Unknown Source)

at utils.queue.QueueSorted.put(QueueSorted.java:51)

at framework.search.GraphSearch.solve(GraphSearch.java:53)

at Hlavni.main(Hlavni.java:66)

org.apache.commons.collections.list. TreeList$TreeL istlterator.previous (TreeList java:841)

at search.informed.BestFirstSearch .solve(BestFirstSearch.java:20)

Affected Code

public Object previous() {

if (next == null) {
QEXE. = parent. rogk- gehCoext Tadex - 1)

} else {
next = next.previous(Q);
b
Object value = next.getValue(Q);
ks
b

Test generated by our solution

public void test@() throws Throwable {
TreelList treelList® = new TreelList();
treelist@.add((Object) null);
TreelList.TreelListIterator treelList_TreelListIterator® = new
TreeList.TreelList]
// Undeclared exception!
treelist_TreelListIterator@.previous();

if “parent” is null,

' > this code generates

an exception

80

java.lang.NullPointerException:

at org.apache.tools.ant.util.SymbolicLinkUtils.
isSymbolicLink (SymbolicLinkUtils.java:107)

at org.apache.tools.ant.util.SymbolicLinkUtils.
isSymbolicLink (SymbolicLinkUtils. java:73)

at org.apache.tools.ant.util.SymbolicLinkUtils.
deleteSymbolicLink (SymbolicLinkUtils. java:223)

at org.apache.tools.ant.taskdefs.optional.unix.
Symlink.delete (Symlink.java:187)

Listing 1. Crash Stack Trace for ANT-49137.

public void test(0() throws Throwable {
Symlink symlink0 = new Symlink();
symlinkO.setLink ("");
symlinkO.delete() ;

}

Listing 2. Generated test by EvoCrash for ANT-49137.

Jjava.lang.ArrayIndexOutOfBoundsException:
at org.apache.commons.collections.buffer.
UnboundedFifoBuffer\Sl.remove (
UnboundedFifoBuffer.java:312)

Listing 5. Crash Stack Trace for ACC-53

Object object(0 = new Object () ;
UnboundedFifoBuffer unboundedFifoBuffer(0 =
UnboundedFifoBuffer () ;
unboundedFifoBuffer(0.add (objectO0);
unboundedFifoBuffer0.tail = 82;
unboundedFifoBuffer(0.remove ((Object) null);

new

Listing 6. EvoCrash test for ACC-53

82

| Under review

New “guided” genetic
algorithm

Better fitness function

Case studies: Apache
ant, commons, log4j

38 out of 50 crashes
replicated

A Guided Genetic Algorithm for
Automated Crash Reproduction

Mozhan Soltani
Delft University of Technology
The Netherlands
m.soltani @ tudelft.nl

Abstract—To reduce the effort developers have to make for
crash debugging, resenrchem have proposed several wluﬂons
for ic failure rep jon. Recent ad
the usage of boli i i lysis and dlmtcd
model checklng as underling techniques for post-failure analysis
of crash stack traces. However, existing approaches still cannot
reproduce many real-world crlshes due to various limitations,
such as environment d ies, path i and time
complexity. In this paper, we present EvoCrash, a post-failure
approach which uses a novel Guided Genetic Algorithm (GGA)
to cope with the large search space characterizing real-world

Annibale Panichella
Delft University of Technology
The Netherlands
a.panichella@tudelft.nl

Arie van Deursen
Delft University of Technology
The Netherlands
Arie.vanDeursen @tudelft.nl

STAR (6], an approach based on backward symbolic execu-
tion. STAR outperforms earlier crash replication techniques,
such as Randoop [17] and BugRedux [18]. Xuan et al. [12]
presented Mqush. a tool that updates existing test cases
using specific P s, thus ing a new pool of
tests to run against the software under test. Nayrollc etal [7]
proposed JCHARMING, based on directed model checking
combined with program slicing (7], [19].

Unfoﬂunalely the state-of-the-art tools suffer from several
li ions. For le, STAR cannot handle cases with

software programs, and thereby address major chall in
automated crash replication. Results of an empirical study on
three open-source systems show that EvoCrash can successfully
replicate 33 (66%) of real-world crashes, thereby outperforming
the three cutting-edge crash replication techniques.

Keywords-Search-Based Software Testing; Genetic Algorithms;
Crash Reproducti

I. INTRODUCTION

Manual crash replication is a labor-intensive task. Develop-
ers faced with this task need to reproduce failures reported in
issue tracking systems, which all too often contain insufficient
data to determine the root cause of a failure.

Hence, to reduce developer effort, many different automated
crash replication techniques have been proposed in the litera-
ture. Such techniques typically aim at generating tests trigger-
ing the target failure. For example, record-replay approaches
[1]-[5] monitor software behavior via software/hardware in-
strumentation to collect the observed objects and method calls
when failures occur. Unfortunately, such techniques suffer
from well-known practical limitations, such as performance
overhead [6], and privacy issues [7].

As opposed to these costly techniques, post-failure ap-
proaches [6]-[12] try to replicate crashes by exploiting data
that is available after the failure, typically stored in log files
or external bug tracking systems. Most of these techniques
require specific input data in addition to crash stack traces [6],
such as core dumps [8]-[10], [13] or models of the software
like input grammars [14], [15] or class invariants [16].

Since such additional information is usually not available
to developers, recent advances in the field have focused on
crash stack traces as the only source of information for de-
bugging [6], [7], [12]. For example, Chen and Kim developed

external environment dependencies [6] (e.g., file or network
inputs), non-trivial string constraints, or complex logic poten-
tially leading to a path explosion. MuCrash is limited by the
ability of existing tests in covering method call sequences of
interest, and it may lead to a large number of unnecessary
mutated test cases [12]. JCHARMING (7], [19] applws model
checking which can be putationally 2

similar to STAR, JCHARMING does not handle crash cases
with environmental dependencies.

In our previous preliminary study [20], we have suggested
to re-use existing unit test generation tools, such as Evo-
Suite [21], for crash replication. To that end, we developed
a fitness function to assess the capability of candidate test
cases in replicating the target failure. Although this simple
solution could help to replicate one crash not handled by
STAR and MuCrash, our preliminary study showed that this
simple solution still leaves other crashes as non-reproducible.
These negative results are due to the large search space for
real world programs where the probability to generate test
data satisfying desired failure conditions is low. In fact, the
classic genetic operators from existing test frameworks are
aimed at maximizing specific coverage criteria [21] instead
of exploiting single execution paths and object states that
characterize software failures.

To address this challenge, this paper presents an evolu-
tionary search-based approach, named EvoCrash, for crash
reproduction. EvoCrash is built on top of EvoSuite [21], the
well-known automatic test suite generation tool for Java. For
EvoCrash we developed a novel guided genetic algorithm
(GGA). It lets the stack trace guide the search, thus reducing
the search space. In particular, GGA uses a novel generative
routine to build an initial population of tests exercising at
least one of the methods reported in the crash stack frames.

83

Big Software on the Run

HTTP Status 500 - javax.serviet.ServietException: 4

Lterproxy. java:344)

AAAAAA

Long running (d|5tr|buted) systems ,_
* All situations will occur
* All exceptions will fire

10W C
"1O0W C

10W C

o developers deal with exceptions?
o exceptions manifest themselves in bugs?
o exceptions show up in log data?

How can logged exceptions be reproduced?

84

Exceptional Logging: Key Points

* Error handling itself is error prone
* Developers work around Java’s checked exceptions

e Supportis needed to find relevant exceptionsin
abundance of log data

* Automated crash reproduction is within reach

Rethinking Exception Handling?

* Empirical:

How big is the exception handling problem?
* Software engineering:

How can we deal with the EH problem?
* Language engineering:

Can we think of new languages solving EH?

* Domain analysis: Anomaly versus exception?
Can we push exceptionsto the domain level?

TU Delft is Hiring!

* PhD positionin EU STAMP project on test amplification
* Postdoc position in BSR project on exceptional logging.

* Tenure track positions in distributed systems, cyber
security, algorithms

¥y -l
”&%

N

: | — g a "*
73 B0 \ .', (o P
P, TN :
e - ‘9‘ \ S Ve i, S
; .. ,\ !"‘ 0‘1 - 0N A

Image credlt goedsonsallterrainlogginginc.com

