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Abstract—The release engineering process is the process that

brings high quality code changes from a developer’s workspace to

the end user, encompassing code change integration, continuous

integration, build system specifications, infrastructure-as-code,

deployment and release. Recent practices of continuous delivery,

which bring new content to the end user in days or hours rather

than months or years, have generated a surge of industry-driven

interest in the release engineering pipeline. This paper argues that

the involvement of researchers is essential, by providing a brief

introduction to the six major phases of the release engineering

pipeline, a roadmap of future research, and a checklist of three

major ways that the release engineering process of a system

under study can invalidate the findings of software engineering

studies. The main take-home message is that, while release engi-

neering technology has flourished tremendously due to industry,

empirical validation of best practices and the impact of the

release engineering process on (amongst others) software quality

is largely missing and provides major research opportunities.

I. INTRODUCTION

Release engineering is the process responsible for taking the
individual code contributions of developers and bringing those
to the end user in the form of a high quality software release.
From start to finish, a myriad of tasks need to be performed by
an organization’s release engineers, i.e., the personnel whose
main duties are the development, maintenance, and operation
of an organization’s release infrastructure.

Broadly speaking, the patches of developers need to be re-
viewed and integrated (merged) [13] from developer branches
into team and product branches, where they are compiled [48]
and tested [89] by the Continuous Integration (CI) system,
until they land in the master branch. When an upcoming
release enters the feature-complete stage, release stabilization
begins [60], where major bugs in the functionality of the
release are addressed. When the release date is near, the new
release needs to be deployed [22], i.e., copied to a web server,
virtual machine or app store. Finally, the deployed release
needs to be made available (“released”) to users [87].

In contrast to other research fields (even within the software
engineering discipline), recent advances in release engineering
have largely been made by industry, not academia. Indeed, it
was market pressure, the influence of agile development and
the desire to bring value to the customer faster that inspired the
recent phenomenon of continuous delivery [36]. For example,
while the releases of the past would take months or even years
to produce, modern applications like Google Chrome [70],

Mozilla Firefox [71] and the Facebook Mobile app have a
release “cycle time” of 2-6 weeks, while web-delivered content
like the Netflix and Facebook websites push new releases 1-2
times daily [65]. Furthermore, lean web apps like the popular
IMVU chat application1 release up to 50 times per day [26].

As these pioneering organizations successfully developed
experimental tools and practices to make such rapid release cy-
cles a reality, Facebook’s release engineering director, Chuck
Rossi, claimed that “continuous delivery for web apps is a
solved problem” [65]. However, he did add “. . . , yet continu-
ous delivery for mobile apps is a serious challenge.” Indeed,
for every success and breakthrough that has been made, there
are a slew of failures. Even today, software organizations who
are not at the forefront of the release engineering revolution
need to consider what release practices should be adopted,
what tools they should invest in and what profiles should
be used to make hiring decisions. Even for the pioneers of
modern release engineering, newer technologies like mobile
apps still pose open challenges. Broader questions include:
what will be the long-term effect on user-perceived quality
of releases [43, 45], how quickly will technical debt ramp up
when release cycles are so short and can end users keep up
with a continuous stream of new releases?

While most of the recent advances in release engineering,
such as best practices and tooling, have been driven by
industry, researchers can play an essential role in addressing
the above questions. For example, researchers can provide
value by analyzing release engineering data stored in industrial
version control systems, bug/review repositories, CI servers
and deployment logs, with the aim of gleaning actionable
insights for release engineers. Such insights could help them
decide what best practices to adopt, understand why (and
when) continuous delivery is feasible, and what compromises
are necessary in terms of software quality and technical debt.

As a first step towards promoting release engineering re-
search, this paper makes three major contributions:

1) Providing researchers with a working definition of mod-
ern release engineering pipelines and their repositories.

2) Discussing each release engineering activity in more
detail, proposing promising avenues for research that,
in our opinion, can help release engineers today.

1http://www.imvu.com/
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On average, we 
release new code fifty 

times a day.
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reduce the risk 
of releasing software

if it hurts, do it 
more frequently, and 

bring the pain 
forward

Jez Humble
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Work fast and 
don’t be afraid to break 

things.
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James Whittaker

Build a 
little and then test it. 

Build some more and test 
some more.



• How quickly can we ship a chemspill release?

• 4-6 weeks       11 hours

• How long to ship a “new feature” release?

• 12-18 months    6 weeks

• How many active code lines?

• 1 1/2        42

• How many checkins per day?

• ~15 per day     325 per day

Before & After

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf 16
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Company Size ...

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf



Thursday, June 6, 13

... vs. Market Share

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf
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#	
  Install	
  PostgreSQL	
  server	
  and	
  client	
  
include_recipe	
  "postgresql::server"	
  
include_recipe	
  "postgresql::client"	
  

#	
  Make	
  postgresql_database	
  resource	
  available	
  
include_recipe	
  "database::postgresql"	
  

#	
  Create	
  database	
  for	
  Rails	
  app	
  
db	
  =	
  node["practicingruby"]["database"]	
  
postgresql_database	
  db["name"]	
  do	
  
	
  	
  connection(	
  
	
  	
  	
  	
  :host	
  	
  	
  	
  	
  =>	
  db["host"],	
  
	
  	
  	
  	
  :port	
  	
  	
  	
  	
  =>	
  node["postgresql"]["config"]["port"],	
  
	
  	
  	
  	
  :username	
  =>	
  db["username"],	
  
	
  	
  	
  	
  :password	
  =>	
  db["password"],	
  
	
  	
  )	
  
end

Provisioning a PostgreSQL DB
https://github.com

/elm
-city-craftw

orks/practicing-ruby-cookbook

describe VM or 
server 

configuration in a 
textual file (in VCS)

programmatic, automatic 
deployment
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Hold On, Isn’t that Called DevOps?



A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15 
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16
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Release engineering is a software 
engineering discipline concerned with the 

development, implementation, and improvement of 
processes to deploy high-quality software 

reliably and predictably.
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Andrej Dyck @ 
RELENG ‘15

Release engineering is a software 
engineering discipline concerned with the 

development, implementation, and improvement of 
processes to deploy high-quality software 

reliably and predictably.

DevOps is an 
organizational approach that 

stresses empathy and cross-functional 
collaboration within and between teams – 

especially development and IT operations – in 
software development organizations, in order 

to operate resilient systems and 
accelerate delivery of changes.

A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15 
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16
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speed up release engineering?
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What can you 
do for release 
engineering?
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if(toggleOn = TRUE){ /* execute this code block*/ }

35

Emerging Alternative: Feature Toggles

if(new_feature_on==true){ 
     /* code of new feature */ 
}
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     /* code of new feature */ 
#endif

pre-compilation run-time
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The key to zero-downtime releases is decoupling the various parts of the release 
process so they can happen independently as far as possible. In particular, it 
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you 
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just 
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API 
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/ 
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as 
well at the old URIs. For resources, when you push a new version of your website 
out, you put the static resources such as images, Javascript, HTML, and CSS to 
a new directory—for example, you could put the images for version 2.6.5 of your 
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The 
idea is to have two identical versions of your production environment, which 
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new 
version of the application. So we deploy it to the blue environment, and let the 
application warm up (you can do this as much as you like). This does not in any 
way affect the operation of the green environment. We can run smoke tests against 
the blue environment to check it is working properly. When we’re ready, moving 
to the new version is as simple as changing the router configuration to point to 
the blue environment instead of the green environment. The blue environment 
thus becomes production. This switchover can typically be performed in much 
less than a second.
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version of the application. So we deploy it to the blue environment, and let the 
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In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new 
version of the application. So we deploy it to the blue environment, and let the 
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In the example in Figure 10.2, users of the system are routed to the green envi-
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the blue environment to check it is working properly. When we’re ready, moving 
to the new version is as simple as changing the router configuration to point to 
the blue environment instead of the green environment. The blue environment 
thus becomes production. This switchover can typically be performed in much 
less than a second.
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#	
  Install	
  PostgreSQL	
  server	
  and	
  client	
  
include_recipe	
  "postgresql::server"	
  
include_recipe	
  "postgresql::client"	
  

#	
  Make	
  postgresql_database	
  resource	
  available	
  
include_recipe	
  "database::postgresql"	
  

#	
  Create	
  database	
  for	
  Rails	
  app	
  
db	
  =	
  node["practicingruby"]["database"]	
  
postgresql_database	
  db["name"]	
  do	
  
	
  	
  connection(	
  
	
  	
  	
  	
  :host	
  	
  	
  	
  	
  =>	
  db["host"],	
  
	
  	
  	
  	
  :port	
  	
  	
  	
  	
  =>	
  node["postgresql"]["config"]["port"],	
  
	
  	
  	
  	
  :username	
  =>	
  db["username"],	
  
	
  	
  	
  	
  :password	
  =>	
  db["password"],	
  
	
  	
  )	
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Abstract—Infrastructure-as-code automates the process of
configuring and setting up the environment (e.g., servers, VMs
and databases) in which a software system will be tested and/or
deployed, through textual specification files in a language like
Puppet or Chef. Since the environment is instantiated auto-
matically by the infrastructure languages’ tools, no manual
intervention is necessary apart from maintaining the infrastruc-
ture specification files. The amount of work involved with such
maintenance, as well as the size and complexity of infrastructure
specification files, have not yet been studied empirically. Through
an empirical study of the version control system of 265 OpenStack
projects, we find that infrastructure files are large and churn
frequently, which could indicate a potential of introducing bugs.
Furthermore, we found that the infrastructure code files are
coupled tightly with the other files in a project, especially test files,
which implies that testers often need to change infrastructure
specifications when making changes to the test framework and
tests.

I. INTRODUCTION

Infrastructure-as-code (IaC) is a practice to specify and
automate the environment in which a software system will be
tested and/or deployed [1]. For example, instead of having to
manually configure the virtual machine on which a system
should be deployed with the right versions of all required
libraries, one just needs to specify the requirements for the VM
once, after which tools automatically apply this specification
to generate the VM image. Apart from automation, the fact
that the environment is specified explicitly means that the
same environment will be deployed everywhere, ruling out
inconsistencies.

The suffix “as-code” in IaC refers to the fact that the
specification files for this infrastructure are developed in a kind
of programming language, like regular source code, and hence
can be (and are) versioned in a version control system. Puppet
[2] and Chef [3] are two of the most popular infrastructure
languages. They are both designed to manage deployments on
servers, cloud environments and/or virtual machines, and can
be customized via plug-ins to adapt to one’s own working
environment. Both feature a domain-specific language syntax
that even non-programmers can understand.

The fact that IaC requires a new kind of source code files
to be developed and maintained in parallel to source code and
test code, rings some alarm bells. Indeed, in some respects
IaC plays a similar role as the build system, which consists of
scripts in a special programming language such as GNU Make
or Ant that specify how to compile and package the source
code. McIntosh et al. [4] have shown how build system files
have a high relative churn (i.e., amount of code change) and

have a high coupling with source code and test files, which
means that developers and testers need to perform a certain
effort to maintain the build system files as the code and tests
evolve. Based on these findings, we conjecture that IaC could
run similar risks and generate similar maintenance overhead
as regular build scripts.

In order to validate this conjecture, we perform an empir-
ical case study on 265 OpenStack projects. OpenStack is an
ecosystem of projects implementing a cloud platform, which
requires substantial IaC to support deployment and tests on
virtual machines. The study replicates the analysis of McIntosh
et al. [4], this time to study the co-evolution relationship
between the IaC files and the other categories of files in a
project, i.e., source code, test code, and build scripts. To get a
better idea of the size and change frequency of IaC code, we
first address the following three preliminary questions.

PQ1) How many infrastructure files does a project
have?

Projects with multiple IaC files have more IaC files
than build files (median of 11.11% of their files).
Furthermore, the size of infrastructure files is in the
same ballpark as that of production and test files, and
larger than build files.

PQ2) How many infrastructure files change per month?

28% of the infrastructure files in the projects changed
per month, which is as frequently as production files,
and significantly more than build and test files.

PQ3) How large are infrastructure system changes?

The churn of infrastructure files is comparable to build
files and significantly different with the other file cat-
egories. Furthermore, the infrastructure files have the
highest churn per file (MCF) value among the four file
categories.

Based on the preliminary analysis results, we then address
the following research questions:

RQ1) How tight is the coupling between infrastructure
code and other kinds of code?

Although less commits change infrastructure files than
the other file categories, the changes to IaC files are
tightly coupled with changes to Test and Production
files. Furthermore, the most common reasons for cou-
pling between infrastructure and test are “Integration”
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ABSTRACT
Infrastructure as Code (IaC) is the practice of specifying
computing system configurations through code, and manag-
ing them through traditional software engineering methods.
The wide adoption of configuration management and in-
creasing size and complexity of the associated code, prompt
for assessing, maintaining, and improving the configuration
code’s quality. In this context, traditional software engi-
neering knowledge and best practices associated with code
quality management can be leveraged to assess and manage
configuration code quality. We propose a catalog of 13 im-
plementation and 11 design configuration smells, where each
smell violates recommended best practices for configuration
code. We analyzed 4,621 Puppet repositories containing 8.9
million lines of code and detected the cataloged implemen-
tation and design configuration smells. Our analysis reveals
that the design configuration smells show 9% higher aver-
age co-occurrence among themselves than the implementa-
tion configuration smells. We also observed that configura-
tion smells belonging to a smell category tend to co-occur
with configuration smells belonging to another smell cate-
gory when correlation is computed by volume of identified
smells. Finally, design configuration smell density shows
negative correlation whereas implementation configuration
smell density exhibits no correlation with the size of a con-
figuration management system.

CCS Concepts
•Software and its engineering ! Specification lan-

guages; Software maintenance tools; Software libraries
and repositories; Software design engineering;
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Technical debt, Maintainability
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1. INTRODUCTION
Infrastructure as Code (IaC) [13] is the practice of spec-

ifying computing system configurations through code, au-
tomating system deployment, and managing the system con-
figurations through traditional software engineering meth-
ods. For example, a server farm that contains numerous
nodes with di↵erent hardware configurations and di↵erent
software package requirements can be specified using con-
figuration management languages such as Puppet [39], Chef
[37], CFEngine [4], or Ansible [1] and deployed automatically
without human intervention. Such automated yet custom
configured deployment is not only faster than the manual
process but is also reliable and repeatable.
Apart from automating an infrastructure deployment, the

IaC paradigm brings the infrastructure, the code and the
tools and services used to manage the infrastructure, in the
purview of a software system. Therefore, IaC practices treat
configuration code similar to the production code and apply
traditional software engineering practices such as reviewing,
testing, and versioning on configuration code as well.
A lot of work has been done to write maintainable code

[8, 21] and achieve high design quality [36] in traditional
software engineering. Similar to production code, configu-
ration code may also become unmaintainable if the changes
to configuration code are made without diligence and care.
In a recent study, Jiang et at. [14] argued that configura-
tion code must be treated as production code due to the
characteristics and maintenance needs of the configuration
code. Therefore, traditional code and design quality prac-
tices must be adopted to write and maintain high quality
configuration code.
In this context, we planned a preliminary quality analysis

of configuration code where we focused on the maintainabil-
ity aspect of the configuration code quality. We pose the
following questions to achieve the above stated goal:

1. What is the distribution of maintainability smells in
configuration code? Which smells are commonly found
and which ones are rarely found?

2. What is the relationship between the occurrence of de-
sign configuration smells and implementation configu-
ration smells?

3. Is the principle of coexistence applicable to smells in
configuration projects?

4. Does smell density depend on the size of a configura-
tion project?

MSR 2016
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Metrics are important, 
but people optimize for what you 
measure or show them, so choose 

your KPI carefully!
[John O'Duinn]
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What do you mean, Dr. Adams?! 
These poor students’ research 

is impacted by the release 
engineering process? They are 
just doing empirical research on 

large software data!
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Release Cycles Vary among
Popular Studied Systems

Fig. 3: Integration delay is computed by counting the re-
leases that occur between when an issue status changes to
RESOLVED-FIXED and the the date of the release note that
lists that issue.

Fig. 4: Delays in days between releases of ArgoUML, Eclipse,
and Firefox. The number shown over each boxplot is the
median interval

project. For example, Figure 4, shows that Firefox releases
consistently every 42 days (six weeks), whereas the times
between ArgoUML releases vary from 50 to 220 days. The
consistency of Firefox releases may lead to more delayed
issues, since they rigidly adhere to a six-week release schedule
despite accumulating issues that could not be integrated.

34% to 60% of addressed issues in the traditional
release cycle systems were delayed by one or more releases.
Figure 2 shows that 98% of the addressed issues in Firefox
are delayed by one or more releases. Firefox is expected to
have delayed issues due its rapid release cycles. However,
98% is still a considerably large percentage. Furthermore, even
for the systems that adopt a more traditional release cycle,
34% (ArgoUML) to 60% (Eclipse) of the addressed issues are
delayed by one or more releases. This result indicates that even
though an issue is addressed, integration could be delayed by
one or more releases.

Many delayed issues were addressed well before releases
from which they were omitted. Addressed issues could be
delayed from integration because they were addressed late
in the release cycle, e.g., one day or one week before the
upcoming release date. In order to compare the rapid and
traditional release cycles regarding whether delayed issues
are addressed late in the release schedule, we computed the

Fig. 5: Distribution of days between when an issue was
addressed and the next missed release divided by the release
window time.

Addressing Stage metric (AS) for each issue. The AS metric
is calculated using the following equation: days to next release

release window

,
where days to next release is the number of days when an issue
is addressed before the next release (e.g., the time between t3
to t4 in Figure 3), and the release window is the time in days
between the next upcoming release and the respective previous
release (e.g., t4 to t2). An AS value close to 1 means that an
issue was addressed too close to the next release, whereas a
value close to 0 means that an issue was addressed at the
beginning of a release cycle. Figure 5 shows the distribution
of the AS metric for each project. The smallest AS median
is observed for Eclipse, which is 0.45. For ArgoUML and
Firefox, the median is 0.52 and 0.53, respectively. The AS
medians are roughly in the middle of the release. Moreover,
the boxes extend to cover between 0.25 and 0.75. The result
suggests that, in the studied projects, delayed issues are usually
addressed 1

4 to 3
4 of the way through a release. Hence, it is

unlikely that most addressed issues miss the next release solely
because they were addressed too close to an upcoming release
date.

The integration of 34% to 60% of the addressed issues
in the traditionally releasing systems and 98% in the
rapidly releasing system were delayed by one or more
releases. Furthermore, we find that many delayed issues
were addressed well before releases from which they were
omitted from.

RQ2: Can we accurately predict when an addressed issue
will be integrated?
Motivation. Several studies proposed approaches to inves-
tigate the time required to address an issue [2–7]. These
studies could help to estimate when an issue will be addressed.
However, we find that integration delays when an addressed
issue will be delivered to users. Even though several issues are
addressed well before the next release date, their integration is
delayed. For users and contributors, however, knowing the re-
lease in which an addressed issue will be integrated is of great
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An Empirical Study of Delays in the 
Integration of Addressed Issues

D. A. da Costa et al. 
[ICSME 2014]
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“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”
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