
How NOT to Analyze your
Release Process

… with Suggestions!
M
C IS

http://imgs.steps.dragoart.com/how-to-draw-a-flying-dragon-dragon-in-flight-step-8_1_000000102347_5.gifhttp://www.printed-editions.com/upload/standard/Harold_Edgerton_Pigeon_Release_69.jpg

Bram Adams
bram.adams@polymtl.ca

http://imgs.steps.dragoart.com/how-to-draw-a-flying-dragon-dragon-in-flight-step-8_1_000000102347_5.gif
http://imgs.steps.dragoart.com/how-to-draw-a-flying-dragon-dragon-in-flight-step-8_1_000000102347_5.gif

2

Modern Release Engineering in a Nutshell
Why Researchers should Care

Bram Adams
Polytechnique Montréal, Canada

bram.adams@polymtl.ca

Shane McIntosh
McGill University, Canada
shane.mcintosh@mcgill.ca

Abstract—The release engineering process is the process that

brings high quality code changes from a developer’s workspace to

the end user, encompassing code change integration, continuous

integration, build system specifications, infrastructure-as-code,

deployment and release. Recent practices of continuous delivery,

which bring new content to the end user in days or hours rather

than months or years, have generated a surge of industry-driven

interest in the release engineering pipeline. This paper argues that

the involvement of researchers is essential, by providing a brief

introduction to the six major phases of the release engineering

pipeline, a roadmap of future research, and a checklist of three

major ways that the release engineering process of a system

under study can invalidate the findings of software engineering

studies. The main take-home message is that, while release engi-

neering technology has flourished tremendously due to industry,

empirical validation of best practices and the impact of the

release engineering process on (amongst others) software quality

is largely missing and provides major research opportunities.

I. INTRODUCTION

Release engineering is the process responsible for taking the
individual code contributions of developers and bringing those
to the end user in the form of a high quality software release.
From start to finish, a myriad of tasks need to be performed by
an organization’s release engineers, i.e., the personnel whose
main duties are the development, maintenance, and operation
of an organization’s release infrastructure.

Broadly speaking, the patches of developers need to be re-
viewed and integrated (merged) [13] from developer branches
into team and product branches, where they are compiled [48]
and tested [89] by the Continuous Integration (CI) system,
until they land in the master branch. When an upcoming
release enters the feature-complete stage, release stabilization
begins [60], where major bugs in the functionality of the
release are addressed. When the release date is near, the new
release needs to be deployed [22], i.e., copied to a web server,
virtual machine or app store. Finally, the deployed release
needs to be made available (“released”) to users [87].

In contrast to other research fields (even within the software
engineering discipline), recent advances in release engineering
have largely been made by industry, not academia. Indeed, it
was market pressure, the influence of agile development and
the desire to bring value to the customer faster that inspired the
recent phenomenon of continuous delivery [36]. For example,
while the releases of the past would take months or even years
to produce, modern applications like Google Chrome [70],

Mozilla Firefox [71] and the Facebook Mobile app have a
release “cycle time” of 2-6 weeks, while web-delivered content
like the Netflix and Facebook websites push new releases 1-2
times daily [65]. Furthermore, lean web apps like the popular
IMVU chat application1 release up to 50 times per day [26].

As these pioneering organizations successfully developed
experimental tools and practices to make such rapid release cy-
cles a reality, Facebook’s release engineering director, Chuck
Rossi, claimed that “continuous delivery for web apps is a
solved problem” [65]. However, he did add “. . . , yet continu-
ous delivery for mobile apps is a serious challenge.” Indeed,
for every success and breakthrough that has been made, there
are a slew of failures. Even today, software organizations who
are not at the forefront of the release engineering revolution
need to consider what release practices should be adopted,
what tools they should invest in and what profiles should
be used to make hiring decisions. Even for the pioneers of
modern release engineering, newer technologies like mobile
apps still pose open challenges. Broader questions include:
what will be the long-term effect on user-perceived quality
of releases [43, 45], how quickly will technical debt ramp up
when release cycles are so short and can end users keep up
with a continuous stream of new releases?

While most of the recent advances in release engineering,
such as best practices and tooling, have been driven by
industry, researchers can play an essential role in addressing
the above questions. For example, researchers can provide
value by analyzing release engineering data stored in industrial
version control systems, bug/review repositories, CI servers
and deployment logs, with the aim of gleaning actionable
insights for release engineers. Such insights could help them
decide what best practices to adopt, understand why (and
when) continuous delivery is feasible, and what compromises
are necessary in terms of software quality and technical debt.

As a first step towards promoting release engineering re-
search, this paper makes three major contributions:

1) Providing researchers with a working definition of mod-
ern release engineering pipelines and their repositories.

2) Discussing each release engineering activity in more
detail, proposing promising avenues for research that,
in our opinion, can help release engineers today.

1http://www.imvu.com/

2

Modern Release Engineering in a Nutshell
Why Researchers should Care

Bram Adams
Polytechnique Montréal, Canada

bram.adams@polymtl.ca

Shane McIntosh
McGill University, Canada
shane.mcintosh@mcgill.ca

Abstract—The release engineering process is the process that

brings high quality code changes from a developer’s workspace to

the end user, encompassing code change integration, continuous

integration, build system specifications, infrastructure-as-code,

deployment and release. Recent practices of continuous delivery,

which bring new content to the end user in days or hours rather

than months or years, have generated a surge of industry-driven

interest in the release engineering pipeline. This paper argues that

the involvement of researchers is essential, by providing a brief

introduction to the six major phases of the release engineering

pipeline, a roadmap of future research, and a checklist of three

major ways that the release engineering process of a system

under study can invalidate the findings of software engineering

studies. The main take-home message is that, while release engi-

neering technology has flourished tremendously due to industry,

empirical validation of best practices and the impact of the

release engineering process on (amongst others) software quality

is largely missing and provides major research opportunities.

I. INTRODUCTION

Release engineering is the process responsible for taking the
individual code contributions of developers and bringing those
to the end user in the form of a high quality software release.
From start to finish, a myriad of tasks need to be performed by
an organization’s release engineers, i.e., the personnel whose
main duties are the development, maintenance, and operation
of an organization’s release infrastructure.

Broadly speaking, the patches of developers need to be re-
viewed and integrated (merged) [13] from developer branches
into team and product branches, where they are compiled [48]
and tested [89] by the Continuous Integration (CI) system,
until they land in the master branch. When an upcoming
release enters the feature-complete stage, release stabilization
begins [60], where major bugs in the functionality of the
release are addressed. When the release date is near, the new
release needs to be deployed [22], i.e., copied to a web server,
virtual machine or app store. Finally, the deployed release
needs to be made available (“released”) to users [87].

In contrast to other research fields (even within the software
engineering discipline), recent advances in release engineering
have largely been made by industry, not academia. Indeed, it
was market pressure, the influence of agile development and
the desire to bring value to the customer faster that inspired the
recent phenomenon of continuous delivery [36]. For example,
while the releases of the past would take months or even years
to produce, modern applications like Google Chrome [70],

Mozilla Firefox [71] and the Facebook Mobile app have a
release “cycle time” of 2-6 weeks, while web-delivered content
like the Netflix and Facebook websites push new releases 1-2
times daily [65]. Furthermore, lean web apps like the popular
IMVU chat application1 release up to 50 times per day [26].

As these pioneering organizations successfully developed
experimental tools and practices to make such rapid release cy-
cles a reality, Facebook’s release engineering director, Chuck
Rossi, claimed that “continuous delivery for web apps is a
solved problem” [65]. However, he did add “. . . , yet continu-
ous delivery for mobile apps is a serious challenge.” Indeed,
for every success and breakthrough that has been made, there
are a slew of failures. Even today, software organizations who
are not at the forefront of the release engineering revolution
need to consider what release practices should be adopted,
what tools they should invest in and what profiles should
be used to make hiring decisions. Even for the pioneers of
modern release engineering, newer technologies like mobile
apps still pose open challenges. Broader questions include:
what will be the long-term effect on user-perceived quality
of releases [43, 45], how quickly will technical debt ramp up
when release cycles are so short and can end users keep up
with a continuous stream of new releases?

While most of the recent advances in release engineering,
such as best practices and tooling, have been driven by
industry, researchers can play an essential role in addressing
the above questions. For example, researchers can provide
value by analyzing release engineering data stored in industrial
version control systems, bug/review repositories, CI servers
and deployment logs, with the aim of gleaning actionable
insights for release engineers. Such insights could help them
decide what best practices to adopt, understand why (and
when) continuous delivery is feasible, and what compromises
are necessary in terms of software quality and technical debt.

As a first step towards promoting release engineering re-
search, this paper makes three major contributions:

1) Providing researchers with a working definition of mod-
ern release engineering pipelines and their repositories.

2) Discussing each release engineering activity in more
detail, proposing promising avenues for research that,
in our opinion, can help release engineers today.

1http://www.imvu.com/

@ FoSE,
SANER 2016

Who is
Bram Adams?

Wolfgang De Meuter
Vrije Universiteit Brussel

Herman Tromp
Ghent University

Ahmed E. Hassan
Queen's University

M
C IS

(Lab on Maintenance,
Construction and Intelligence

of Software)

M
C IS

M
C IS

JojoBram

Parastou

Mohammed
Alexandre

MahdisParisa

http://mcis.polymtl.ca

Back in 2009 …

On average, we
release new code fifty

times a day.

How to release 50 times/day?

http://goo.gl/qPT68

How to release 50 times/day?

http://goo.gl/qPT6

Git

8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration 8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration

test

8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration

9 min.

15k tests

test

8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration

9 min.

15k tests

test

staging/production

8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration

9 min.

15k tests

test

staging/production

8

How to release 50 times/day?

http://goo.gl/qPT6

Git

continuous
integration

9 min.

15k tests

6 min.

test

staging/production

8

Release engineering aims to …

9

Release engineering aims to …

9

code
change

Release engineering aims to …

9

code
change

Release engineering aims to …

9

code
change

Release engineering aims to …

9

code
change

FAST

Nowadays …

Time-boxed
releases

11

Time-boxed
releases

6 months

11

Time-boxed
releases

6 weeks

6 months

11

Time-boxed
releases

2 weeks
(mobile)

6 weeks

6 months

11

Time-boxed
releases

twice/day
(web)

2 weeks
(mobile)

6 weeks

6 months

11

Time-boxed
releases

twice/day
(web)

daily

2 weeks
(mobile)

6 weeks

6 months

11

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Release Trains

http://www.informit.com/articles/article.aspx?p=1833567

Jez Humble

http://www.informit.com/articles/article.aspx?p=1833567

reduce the risk
of releasing software

if it hurts, do it
more frequently, and

bring the pain
forward

Jez Humble

http://goo.gl/UlCW

Work fast and
don’t be afraid to break

things.

http://goo.gl/UlCW

James Whittaker

Build a
little and then test it.

Build some more and test
some more.

• How quickly can we ship a chemspill release?

• 4-6 weeks 11 hours

• How long to ship a “new feature” release?

• 12-18 months 6 weeks

• How many active code lines?

• 1 1/2 42

• How many checkins per day?

• ~15 per day 325 per day

Before & After

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf 16

• How quickly can we ship a chemspill release?

• 4-6 weeks 11 hours

• How long to ship a “new feature” release?

• 12-18 months 6 weeks

• How many active code lines?

• 1 1/2 42

• How many checkins per day?

• ~15 per day 325 per day

Before & After

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf 16

• How quickly can we ship a chemspill release?

• 4-6 weeks 11 hours

• How long to ship a “new feature” release?

• 12-18 months 6 weeks

• How many active code lines?

• 1 1/2 42

• How many checkins per day?

• ~15 per day 325 per day

Before & After

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf 16

Company Size ...

Thursday, June 6, 13

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf

Thursday, June 6, 13

... vs. Market Share

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf

https://xebialabs.com/periodic-table-of-devops-tools/ & https://xebialabs.com/the-ultimate-devops-tool-chest/

OK, how should I
combine these

tools?

Release Engineering Pipeline (1)

Release Engineering Pipeline (1)

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

artifact
repo

binaries

CI
reports

4

code changes (patch)

Release Engineering Pipeline (1)

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

1

continuous
integration
(building &
short tests)

source
code
files

build
system

files

3

2

artifact
repo

binaries

CI
reports

4

Nexus

code changes (patch)

4
artifact
repo

Release Engineering Pipeline (2)

…

4
artifact
repo

Release Engineering Pipeline (2)

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

Release Engineering Pipeline (2)

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

infra-
structure

repo

test
environment

production environment

5

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

infra-
structure

repo

test
environment

production environment

5

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

#	
 Install	
 PostgreSQL	
 server	
 and	
 client	

include_recipe	
 "postgresql::server"	

include_recipe	
 "postgresql::client"	

#	
 Make	
 postgresql_database	
 resource	
 available	

include_recipe	
 "database::postgresql"	

#	
 Create	
 database	
 for	
 Rails	
 app	

db	
 =	
 node["practicingruby"]["database"]	

postgresql_database	
 db["name"]	
 do	

	
 	
 connection(

	
 	
 	
 	
 :host	
 	
 	
 	
 	
 =>	
 db["host"],	

	
 	
 	
 	
 :port	
 	
 	
 	
 	
 =>	
 node["postgresql"]["config"]["port"],	

	
 	
 	
 	
 :username	
 =>	
 db["username"],	

	
 	
 	
 	
 :password	
 =>	
 db["password"],	

	
 	
)	

end

Provisioning a PostgreSQL DB
https://github.com

/elm
-city-craftw

orks/practicing-ruby-cookbook

describe VM or
server

configuration in a
textual file (in VCS)

programmatic, automatic
deployment

4
artifact
repo

infra-
structure

repo

test
environment

production environment

5

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

4
artifact
repo

infra-
structure

repo

test
environment

production environment

5

Release Engineering Pipeline (2)

deployment in
production
environment

binaries

deployment reports

7
release to

users 8

…

more stages of tests,
acceptance tests, performance
tests, UI tests, manual tests, etc.

binaries

test
reports 6

Simplified
Pipeline

Simplified
Pipeline

Simplified
Pipeline

integrating code changes

Simplified
Pipeline

integrating code changes building/testing (CI)

Simplified
Pipeline

integrating code changes building/testing (CI)

deploying a new release

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release

24

Hold On, Isn’t that Called DevOps?

A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16

Andrej Dyck @
RELENG ‘15

A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16

Andrej Dyck @
RELENG ‘15

Release engineering is a software
engineering discipline concerned with the

development, implementation, and improvement of
processes to deploy high-quality software

reliably and predictably.

A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16

Andrej Dyck @
RELENG ‘15

Release engineering is a software
engineering discipline concerned with the

development, implementation, and improvement of
processes to deploy high-quality software

reliably and predictably.

DevOps is an
organizational approach that

stresses empathy and cross-functional
collaboration within and between teams –

especially development and IT operations – in
software development organizations, in order

to operate resilient systems and
accelerate delivery of changes.

A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering and devops, RELENG ’15
N. Kerzazi and B. Adams. Who Needs Release and DevOps Engineers, and Why?, CSED ‘16

26
Len Bass

26
Len Bass

DevOps is a set of practices intended to
reduce the time between committing a change to a
system and the change being placed into normal

production, while ensuring high quality.

26
Len Bass

DevOps is a set of practices intended to
reduce the time between committing a change to a
system and the change being placed into normal

production, while ensuring high quality.
speed up release engineering?

27

What can you
do for release
engineering?

integrating code changes building/testing (CI)

releasing to the user deploying a new release

integrating code changes building/testing (CI)

releasing to the user deploying a new release

Branch-based Integration Hell

29

Branch-based Integration Hell

29

git
repo

Branch-based Integration Hell

29

git
repo

myapp
v.1

Branch-based Integration Hell

29

git
repo

myapp
v.1

?

Branch-based Integration Hell

29

git
repo

myapp
v.1

Branch-based Integration Hell

29

feature branch 1git
repo

myapp
v.1

Branch-based Integration Hell

29

feature branch 1git
repo

myapp
v.1

Branch-based Integration Hell

29

feature branch 1git
repo

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

MERGE

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

MERGE

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

MERGE

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

release branch

MERGE

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

release branch

MERGE

myapp
v.1

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

release branch

MERGE

myapp
v.1

feature branch 2

master branch

Branch-based Integration Hell

29

feature branch 1git
repo

release branch

MERGE CONFLICT?

myapp
v.1

feature branch 2

master branch

Branch-based Integration Hell

29

3rd party
dependency

feature branch 1git
repo

release branch

MERGE CONFLICT?

myapp
v.1

feature branch 2

master branch

Branch-based Integration Hell

29

3rd party
dependency

feature branch 1git
repo

release branch

MERGE CONFLICT?

myapp
v.1

feature branch 2

master branch

Branch-based Integration Hell

29

3rd party
dependency

feature branch 1git
repo

release branch

MERGE CONFLICT?

myapp
v.1

feature branch 2
sy

nc

Conflicts Cause Trouble

30
Proactive Detection of Collaboration Conflicts (Brun et al.)

Conflicts Cause Trouble

30
Proactive Detection of Collaboration Conflicts (Brun et al.)

Conflicts Cause Trouble

30
Proactive Detection of Collaboration Conflicts (Brun et al.)

on average 16% of
all merges have
textual conflicts

(manual resolution
needed)

Conflicts Cause Trouble

30
Proactive Detection of Collaboration Conflicts (Brun et al.)

on average 16% of
all merges have
textual conflicts

(manual resolution
needed)

on average 5%
of all merges

have build issues

Conflicts Cause Trouble

30
Proactive Detection of Collaboration Conflicts (Brun et al.)

on average 16% of
all merges have
textual conflicts

(manual resolution
needed)

on average 5%
of all merges

have build issues

on average
11.7% of all

merges have test
issues

31

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Emerging Alternative: Feature Toggles

31

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Emerging Alternative: Feature Toggles

#ifdef new_feature_on
 /* code of new feature */
#endif

pre-compilation

31

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Emerging Alternative: Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

#ifdef new_feature_on
 /* code of new feature */
#endif

pre-compilation run-time

Toggle-based Development on Trunk

32

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:on

Toggle-based Development on Trunk

32

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

feature (toggle) 2

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

feature (toggle) 2

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

feature (toggle) 2

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

feature (toggle) 2

Integration By Toggling

Feature2:off
Feature1:off Feature1: on

Feature2:off

36

Feature2:on
Feature1:onmaster branch

Toggle-based Development on Trunk

32

feature (toggle) 1

feature (toggle) 2
code locations under
change are explicitly

visible (toggled blocks)

integrating code changes building/testing (CI)

releasing to the user deploying a new release

integrating code changes building/testing (CI)

releasing to the user deploying a new release

34

https://xkcd.com/303/

35

35

35

Build System Converts Source
Code into Deliverables

35Autotools

Make

Step 1 - Configuration

36

Autotools

Step 1 - Configuration

36

Autotools

Features

Step 1 - Configuration

36

Autotools

Features

Step 1 - Configuration

36

Tools

Autotools

Features

Step 1 - Configuration

36

Tools

Autotools

Features

menuconfig USB_SUPPORT
 bool "USB support"
 depends on HAS_IOMEM
 default y
 ---help---
 This option adds core support for Universal Serial Bus (USB).
 You will also need drivers from the following menu to use it.

if USB_SUPPORT

config USB_COMMON
 tristate
 default y
 depends on USB || USB_GADGET

Host-side USB depends on having a host controller
config USB_ARCH_HAS_HCD
 boolean
 default y if USB_ARCH_HAS_OHCI
 default y if USB_ARCH_HAS_EHCI
 default y if USB_ARCH_HAS_XHCI
 default y if PCMCIA && !M32R # sl811_cs
 default y if ARM # SL-811
 default y if BLACKFIN # SL-811
 default y if SUPERH # r8a66597-hcd
 default PCI

Example (Kconfig)

menuconfig USB_SUPPORT
 bool "USB support"
 depends on HAS_IOMEM
 default y
 ---help---
 This option adds core support for Universal Serial Bus (USB).
 You will also need drivers from the following menu to use it.

if USB_SUPPORT

config USB_COMMON
 tristate
 default y
 depends on USB || USB_GADGET

Host-side USB depends on having a host controller
config USB_ARCH_HAS_HCD
 boolean
 default y if USB_ARCH_HAS_OHCI
 default y if USB_ARCH_HAS_EHCI
 default y if USB_ARCH_HAS_XHCI
 default y if PCMCIA && !M32R # sl811_cs
 default y if ARM # SL-811
 default y if BLACKFIN # SL-811
 default y if SUPERH # r8a66597-hcd
 default PCI

Example (Kconfig)

configuration option

configuration option

menuconfig USB_SUPPORT
 bool "USB support"
 depends on HAS_IOMEM
 default y
 ---help---
 This option adds core support for Universal Serial Bus (USB).
 You will also need drivers from the following menu to use it.

if USB_SUPPORT

config USB_COMMON
 tristate
 default y
 depends on USB || USB_GADGET

Host-side USB depends on having a host controller
config USB_ARCH_HAS_HCD
 boolean
 default y if USB_ARCH_HAS_OHCI
 default y if USB_ARCH_HAS_EHCI
 default y if USB_ARCH_HAS_XHCI
 default y if PCMCIA && !M32R # sl811_cs
 default y if ARM # SL-811
 default y if BLACKFIN # SL-811
 default y if SUPERH # r8a66597-hcd
 default PCI

Example (Kconfig)

module/built-in/no

yes/no

configuration option

configuration option

menuconfig USB_SUPPORT
 bool "USB support"
 depends on HAS_IOMEM
 default y
 ---help---
 This option adds core support for Universal Serial Bus (USB).
 You will also need drivers from the following menu to use it.

if USB_SUPPORT

config USB_COMMON
 tristate
 default y
 depends on USB || USB_GADGET

Host-side USB depends on having a host controller
config USB_ARCH_HAS_HCD
 boolean
 default y if USB_ARCH_HAS_OHCI
 default y if USB_ARCH_HAS_EHCI
 default y if USB_ARCH_HAS_XHCI
 default y if PCMCIA && !M32R # sl811_cs
 default y if ARM # SL-811
 default y if BLACKFIN # SL-811
 default y if SUPERH # r8a66597-hcd
 default PCI

Example (Kconfig)

constraint
module/built-in/no

yes/no

configuration option

configuration option

constraint

Step 2 - Construction

38

Make

Step 2 - Construction

38

Recipes

=

Make

Step 2 - Construction

38

.cRecipes

=

Make

Step 2 - Construction

38

.cRecipes

=

Make

Step 2 - Construction

38

.cRecipes

.o=

Make

Step 2 - Construction

38

.cRecipes

.o

Dependencies

=

Make

Step 2 - Construction

38

.cRecipes

.o

Dependencies

=

.o.o.o

Make

Step 2 - Construction

38

.cRecipes

.o

Dependencies

=

.exe

.o.o.o

Make

Example (GNU Make)

Example (GNU Make)

hello

Example (GNU Make)

hello

hello.o

Example (GNU Make)

hello

hello.o main.o

Example (GNU Make)

hello

hello.o main.o util.o

Example (GNU Make)

hello

hello.c

hello.o main.o util.o

Example (GNU Make)

hello

hello.c

hello.o main.o

hello.h

util.o

Example (GNU Make)

hello

hello.c

hello.o main.o

hello.h

util.o

util.c

Example (GNU Make)

hello

hello.c

hello.o main.o

hello.h

util.o

util.cutil.h

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

rule

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

rule

target

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

rule

target dependencies

Example (GNU Make)

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

rule

target dependencies

build recipe

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.o

does hello.o exist? NO
is there a rule for hello.o? YES

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does hello.c exist? YES

A Full Build

hello

hello.c

hello.o

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does hello.h exist? YES

A Full Build

hello

hello.c

hello.o

hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o

hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o

hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.o exist? NO
is there a rule for util.o? YES

A Full Build

hello

hello.c

hello.o

hello.h

util.o

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.c exist? YES

A Full Build

hello

hello.c

hello.o

hello.h

util.o

util.c

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.h exist? YES

A Full Build

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does main.o exist? NO
is there a rule for main.o? YES

A Full Build

hello

hello.c

hello.o main.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes main.c exist? YES

A Full Build

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes hello.h exist? YES

A Full Build

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes util.h exist? YES

A Full Build

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

A Full Build

4 build commands
executed!

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

Yeah right, I
could do
that with
Bash as
well …

41

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.o

does hello.o exist? YES
is hello.o newer than all its

dependencies?

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does hello.c exist? YES

An incremental build after
changing hello.h

hello

hello.c

hello.o

does hello.o exist? YES
is hello.o newer than all its

dependencies?

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does hello.h exist? YES

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

does hello.o exist? YES
is hello.o newer than all its

dependencies?

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

does hello.o exist? YES
is hello.o newer than all its

dependencies? NO

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.o exist? YES
is util.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.c exist? YES

does util.o exist? YES
is util.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

util.c

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.h exist? YES

does util.o exist? YES
is util.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does util.o exist? YES
is util.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

YES!

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

No re-compilation necessary for
util.o!

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does main.o exist? YES
is main.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

hello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes main.c exist? YES

does main.o exist? YES
is main.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes hello.h exist? YES

does main.o exist? YES
is main.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.cdoes util.h exist? YES

does main.o exist? YES
is main.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

does main.o exist? YES
is main.o newer than all its

dependencies?

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.hNO

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

hello: hello.o util.o main.o

gcc -o hello hello.o util.o main.o

hello.o: hello.c hello.h

gcc -o hello.o -c hello.c

util.o: util.c util.h

gcc -o util.o -c util.c

main.o: main.c hello.h util.h

gcc -o main.o -c main.c

An incremental build after
changing hello.h

only 3 build commands executed,
so we won (build) time!

hello

hello.c

hello.o main.o

main.chello.h

util.o

util.cutil.h

"The Evolution of the Linux Build System" (Adams et al.)

43

Linux 2.6.16.18

"The Evolution of the Linux Build System" (Adams et al.)

43

Linux 2.6.16.18

0.01

"The Evolution of the Linux Build System" (Adams et al.)

43

Linux 2.6.16.18

0.01 0.11 1.0

1.2 2.0 2.2

2.4 2.6.0 2.6.21.5

"The Evolution of the Linux Build System" (Adams et al.)

43

Linux 2.6.16.18

0.01 0.11 1.0

1.2 2.0 2.2

2.4 2.6.0 2.6.21.5

Build Systems Grow in
Complexity

44

There is Way More than Just
GNU Make!

https://en.w
ikipedia.org/w

iki/List_of_build_autom
ation_softw

are

44

There is Way More than Just
GNU Make!

https://en.w
ikipedia.org/w

iki/List_of_build_autom
ation_softw

are

6 Make-based tools

28 Non-Make-based tools

10 build script generation tools

16 CI tools
9 IaC tools

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

`

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

`

local developer build

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

`

local developer build

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

` CI build of merged change

local developer build

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

CI build of merged change

local developer build

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

closer to release

CI build of merged change

local developer build

Why do (CI) Builds Take so Long?

45

user acceptance/system tests
performance tests

(selection of) unit tests

all unit tests
integration tests

time to run (hours)

full compilation

incremental compilation

closer to release

CI build of merged change

local developer build

Why do (CI) Builds Take so Long?

45

Even worse …

46

Even worse …

46

build machinery
runs on each

commit!

Even worse …

46

build machinery
runs on each

commit!

Even worse …

46

build machinery
runs on each

commit! different feature
configurations

Even worse …

46

build machinery
runs on each

commit!

not just build and test, also code quality builds, nightly builds, etc.

different feature
configurations

Even worse …

46

build machinery
runs on each

commit!

not just build and test, also code quality builds, nightly builds, etc.

not all builds
succeed

different feature
configurations

What Features should we Test First?

v5.2

What Features should we Test First?

v5.2

What Features should we Test First?

v5.2

What Features should we Test First?

48

48

vs. vs. vs. vs. vs.

local vs. remote

feature vs. bug fix vs. integration

48

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

local vs. remote

feature vs. bug fix vs. integration

48

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

feature vs. bug fix vs. integration

48

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

platform/operating system

…

feature vs. bug fix vs. integration

48

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

platform/operating system

…

feature vs. bug fix vs. integration

48

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

build
breakage?

platform/operating system

…

feature vs. bug fix vs. integration

49

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

platform/operating system

…

feature vs. bug fix vs. integration

49

vs. vs. vs. vs. vs.

code/file churn

commit vs. merge

P1 P2 P3 P4

local vs. remote

day of week/time of day

platform/operating system

…

build resources
needed (VMs,

cloud nodes, etc.)

expected
build time

build
refactorings

…

Speculative vs. serial gating

1

1 2

1

1

3

4

2

2 3 1 2 4

1 1 2 1 2 3 1 2 4

ht
tp

s:
//a

rc
hi

ve
.fo

sd
em

.o
rg

/2
01

4/
sc

he
du

le
/e

ve
nt

/o
pe

ns
ta

ck
_t

es
tin

g_
au

to
m

at
io

n/How to Schedule CI Builds?

https://archive.fosdem.org/2014/schedule/event/openstack_testing_automation/

Speculative vs. serial gating

1

1 2

1

1

3

4

2

2 3 1 2 4

1 1 2 1 2 3 1 2 4

serial execution is slow,
but easy to blame build

ht
tp

s:
//a

rc
hi

ve
.fo

sd
em

.o
rg

/2
01

4/
sc

he
du

le
/e

ve
nt

/o
pe

ns
ta

ck
_t

es
tin

g_
au

to
m

at
io

n/How to Schedule CI Builds?

https://archive.fosdem.org/2014/schedule/event/openstack_testing_automation/

Speculative vs. serial gating

1

1 2

1

1

3

4

2

2 3 1 2 4

1 1 2 1 2 3 1 2 4

serial execution is slow,
but easy to blame build

ht
tp

s:
//a

rc
hi

ve
.fo

sd
em

.o
rg

/2
01

4/
sc

he
du

le
/e

ve
nt

/o
pe

ns
ta

ck
_t

es
tin

g_
au

to
m

at
io

n/How to Schedule CI Builds?

parallel execution is fast, but

awkward to blame build

https://archive.fosdem.org/2014/schedule/event/openstack_testing_automation/

integrating code changes building/testing (CI)

releasing to the user deploying a new release

integrating code changes building/testing (CI)

releasing to the user deploying a new release

What are deployment best practices?

52

What are deployment best practices?

52

v.1 v.1v.1

What are deployment best practices?

52

v.1v.2 v.1

What are deployment best practices?

52

v.2 v.1v.2

What are deployment best practices?

52

v.2 v.1v.1

What are deployment best practices?

52

v.1v.1v.1

What are deployment best practices?

52

v.1v.1v.1

When is canary a
success?

What are deployment best practices?

52

v.1v.1v.1

When is canary a
success?

Which users should
receive the canary?

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

green slice green slice green db

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

green slice green slice green db

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

green slice green slice green db

blue slice blue slice blue db

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

green slice green slice green db

blue slice blue slice blue db

Blue-Green Deployment

53

ptg

The key to zero-downtime releases is decoupling the various parts of the release
process so they can happen independently as far as possible. In particular, it
should be possible to put in place new versions of shared resources your applica-
tions depend on, such as databases, services, and static resources, before you
upgrade your applications.

With static resources and web-based services, this is relatively easy. You just
include the version of the resource or service in the URI, and you can have mul-
tiple versions of them available simultaneously. For example, Amazon Web Ser-
vices has a date-based versioning system, with the latest version of the EC2 API
(at the time of writing) available at http://ec2.amazonaws.com/doc/2009-11-30/
AmazonEC2.wsdl. Of course, they keep the earlier versions of the API working as
well at the old URIs. For resources, when you push a new version of your website
out, you put the static resources such as images, Javascript, HTML, and CSS to
a new directory—for example, you could put the images for version 2.6.5 of your
application under /static/2.6.5/images.

Things are a little harder with databases. There is a section dedicated to man-
aging databases in a zero-downtime scenario in Chapter 12, “Managing Data.”

Blue-Green Deployments

This is one of the most powerful techniques we know for managing releases. The
idea is to have two identical versions of your production environment, which
we’ll call blue and green.

Web server

Green slice

Blue slice

Application server

Green slice

Blue slice

RouterUsers

Database server

Green database

Blue database

Figure 10.2 Blue-green deployments

In the example in Figure 10.2, users of the system are routed to the green envi-
ronment, which is the currently designated production. We want to release a new
version of the application. So we deploy it to the blue environment, and let the
application warm up (you can do this as much as you like). This does not in any
way affect the operation of the green environment. We can run smoke tests against
the blue environment to check it is working properly. When we’re ready, moving
to the new version is as simple as changing the router configuration to point to
the blue environment instead of the green environment. The blue environment
thus becomes production. This switchover can typically be performed in much
less than a second.

261Rolling Back Deployments and Zero-Downtime Releases

 Download from www.wowebook.com

RYOR: give the right
people the power
(and tools) to kick
off deployments

green slice green slice green db

blue slice blue slice blue db

A/B Deployment

54

Users

router

A/B

A/B Deployment

54

Users

router

A/B
short-term experiment to find best alternative

A/B Deployment

54

Users

router

A

A/B
short-term experiment to find best alternative

A/B Deployment

54

Users

router

A B

A/B
short-term experiment to find best alternative

55

https://github.com
/elm

-city-craftw
orks/practicing-ruby-cookbook

https://github.com/elm-city-craftworks/practicing-ruby-cookbook

#	
 Install	
 PostgreSQL	
 server	
 and	
 client	

include_recipe	
 "postgresql::server"	

include_recipe	
 "postgresql::client"	

#	
 Make	
 postgresql_database	
 resource	
 available	

include_recipe	
 "database::postgresql"	

#	
 Create	
 database	
 for	
 Rails	
 app	

db	
 =	
 node["practicingruby"]["database"]	

postgresql_database	
 db["name"]	
 do	

	
 	
 connection(

	
 	
 	
 	
 :host	
 	
 	
 	
 	
 =>	
 db["host"],	

	
 	
 	
 	
 :port	
 	
 	
 	
 	
 =>	
 node["postgresql"]["config"]["port"],	

	
 	
 	
 	
 :username	
 =>	
 db["username"],	

	
 	
 	
 	
 :password	
 =>	
 db["password"],	

	
 	
)	

end 55

https://github.com
/elm

-city-craftw
orks/practicing-ruby-cookbook

https://github.com/elm-city-craftworks/practicing-ruby-cookbook

#	
 Install	
 PostgreSQL	
 server	
 and	
 client	

include_recipe	
 "postgresql::server"	

include_recipe	
 "postgresql::client"	

#	
 Make	
 postgresql_database	
 resource	
 available	

include_recipe	
 "database::postgresql"	

#	
 Create	
 database	
 for	
 Rails	
 app	

db	
 =	
 node["practicingruby"]["database"]	

postgresql_database	
 db["name"]	
 do	

	
 	
 connection(

	
 	
 	
 	
 :host	
 	
 	
 	
 	
 =>	
 db["host"],	

	
 	
 	
 	
 :port	
 	
 	
 	
 	
 =>	
 node["postgresql"]["config"]["port"],	

	
 	
 	
 	
 :username	
 =>	
 db["username"],	

	
 	
 	
 	
 :password	
 =>	
 db["password"],	

	
 	
)	

end

Infrastructure code smells?

55

https://github.com
/elm

-city-craftw
orks/practicing-ruby-cookbook

https://github.com/elm-city-craftworks/practicing-ruby-cookbook

56

56

Co-evolution of Infrastructure and Source Code - An
Empirical Study

Yujuan Jiang, Bram Adams
MCIS lab Polytechnique Montreal, Canada

Email: {yujuan.jiang,bram.adams}@polymtl.ca

Abstract—Infrastructure-as-code automates the process of
configuring and setting up the environment (e.g., servers, VMs
and databases) in which a software system will be tested and/or
deployed, through textual specification files in a language like
Puppet or Chef. Since the environment is instantiated auto-
matically by the infrastructure languages’ tools, no manual
intervention is necessary apart from maintaining the infrastruc-
ture specification files. The amount of work involved with such
maintenance, as well as the size and complexity of infrastructure
specification files, have not yet been studied empirically. Through
an empirical study of the version control system of 265 OpenStack
projects, we find that infrastructure files are large and churn
frequently, which could indicate a potential of introducing bugs.
Furthermore, we found that the infrastructure code files are
coupled tightly with the other files in a project, especially test files,
which implies that testers often need to change infrastructure
specifications when making changes to the test framework and
tests.

I. INTRODUCTION

Infrastructure-as-code (IaC) is a practice to specify and
automate the environment in which a software system will be
tested and/or deployed [1]. For example, instead of having to
manually configure the virtual machine on which a system
should be deployed with the right versions of all required
libraries, one just needs to specify the requirements for the VM
once, after which tools automatically apply this specification
to generate the VM image. Apart from automation, the fact
that the environment is specified explicitly means that the
same environment will be deployed everywhere, ruling out
inconsistencies.

The suffix “as-code” in IaC refers to the fact that the
specification files for this infrastructure are developed in a kind
of programming language, like regular source code, and hence
can be (and are) versioned in a version control system. Puppet
[2] and Chef [3] are two of the most popular infrastructure
languages. They are both designed to manage deployments on
servers, cloud environments and/or virtual machines, and can
be customized via plug-ins to adapt to one’s own working
environment. Both feature a domain-specific language syntax
that even non-programmers can understand.

The fact that IaC requires a new kind of source code files
to be developed and maintained in parallel to source code and
test code, rings some alarm bells. Indeed, in some respects
IaC plays a similar role as the build system, which consists of
scripts in a special programming language such as GNU Make
or Ant that specify how to compile and package the source
code. McIntosh et al. [4] have shown how build system files
have a high relative churn (i.e., amount of code change) and

have a high coupling with source code and test files, which
means that developers and testers need to perform a certain
effort to maintain the build system files as the code and tests
evolve. Based on these findings, we conjecture that IaC could
run similar risks and generate similar maintenance overhead
as regular build scripts.

In order to validate this conjecture, we perform an empir-
ical case study on 265 OpenStack projects. OpenStack is an
ecosystem of projects implementing a cloud platform, which
requires substantial IaC to support deployment and tests on
virtual machines. The study replicates the analysis of McIntosh
et al. [4], this time to study the co-evolution relationship
between the IaC files and the other categories of files in a
project, i.e., source code, test code, and build scripts. To get a
better idea of the size and change frequency of IaC code, we
first address the following three preliminary questions.

PQ1) How many infrastructure files does a project
have?

Projects with multiple IaC files have more IaC files
than build files (median of 11.11% of their files).
Furthermore, the size of infrastructure files is in the
same ballpark as that of production and test files, and
larger than build files.

PQ2) How many infrastructure files change per month?

28% of the infrastructure files in the projects changed
per month, which is as frequently as production files,
and significantly more than build and test files.

PQ3) How large are infrastructure system changes?

The churn of infrastructure files is comparable to build
files and significantly different with the other file cat-
egories. Furthermore, the infrastructure files have the
highest churn per file (MCF) value among the four file
categories.

Based on the preliminary analysis results, we then address
the following research questions:

RQ1) How tight is the coupling between infrastructure
code and other kinds of code?

Although less commits change infrastructure files than
the other file categories, the changes to IaC files are
tightly coupled with changes to Test and Production
files. Furthermore, the most common reasons for cou-
pling between infrastructure and test are “Integration”

MSR 2015

56

Co-evolution of Infrastructure and Source Code - An
Empirical Study

Yujuan Jiang, Bram Adams
MCIS lab Polytechnique Montreal, Canada

Email: {yujuan.jiang,bram.adams}@polymtl.ca

Abstract—Infrastructure-as-code automates the process of
configuring and setting up the environment (e.g., servers, VMs
and databases) in which a software system will be tested and/or
deployed, through textual specification files in a language like
Puppet or Chef. Since the environment is instantiated auto-
matically by the infrastructure languages’ tools, no manual
intervention is necessary apart from maintaining the infrastruc-
ture specification files. The amount of work involved with such
maintenance, as well as the size and complexity of infrastructure
specification files, have not yet been studied empirically. Through
an empirical study of the version control system of 265 OpenStack
projects, we find that infrastructure files are large and churn
frequently, which could indicate a potential of introducing bugs.
Furthermore, we found that the infrastructure code files are
coupled tightly with the other files in a project, especially test files,
which implies that testers often need to change infrastructure
specifications when making changes to the test framework and
tests.

I. INTRODUCTION

Infrastructure-as-code (IaC) is a practice to specify and
automate the environment in which a software system will be
tested and/or deployed [1]. For example, instead of having to
manually configure the virtual machine on which a system
should be deployed with the right versions of all required
libraries, one just needs to specify the requirements for the VM
once, after which tools automatically apply this specification
to generate the VM image. Apart from automation, the fact
that the environment is specified explicitly means that the
same environment will be deployed everywhere, ruling out
inconsistencies.

The suffix “as-code” in IaC refers to the fact that the
specification files for this infrastructure are developed in a kind
of programming language, like regular source code, and hence
can be (and are) versioned in a version control system. Puppet
[2] and Chef [3] are two of the most popular infrastructure
languages. They are both designed to manage deployments on
servers, cloud environments and/or virtual machines, and can
be customized via plug-ins to adapt to one’s own working
environment. Both feature a domain-specific language syntax
that even non-programmers can understand.

The fact that IaC requires a new kind of source code files
to be developed and maintained in parallel to source code and
test code, rings some alarm bells. Indeed, in some respects
IaC plays a similar role as the build system, which consists of
scripts in a special programming language such as GNU Make
or Ant that specify how to compile and package the source
code. McIntosh et al. [4] have shown how build system files
have a high relative churn (i.e., amount of code change) and

have a high coupling with source code and test files, which
means that developers and testers need to perform a certain
effort to maintain the build system files as the code and tests
evolve. Based on these findings, we conjecture that IaC could
run similar risks and generate similar maintenance overhead
as regular build scripts.

In order to validate this conjecture, we perform an empir-
ical case study on 265 OpenStack projects. OpenStack is an
ecosystem of projects implementing a cloud platform, which
requires substantial IaC to support deployment and tests on
virtual machines. The study replicates the analysis of McIntosh
et al. [4], this time to study the co-evolution relationship
between the IaC files and the other categories of files in a
project, i.e., source code, test code, and build scripts. To get a
better idea of the size and change frequency of IaC code, we
first address the following three preliminary questions.

PQ1) How many infrastructure files does a project
have?

Projects with multiple IaC files have more IaC files
than build files (median of 11.11% of their files).
Furthermore, the size of infrastructure files is in the
same ballpark as that of production and test files, and
larger than build files.

PQ2) How many infrastructure files change per month?

28% of the infrastructure files in the projects changed
per month, which is as frequently as production files,
and significantly more than build and test files.

PQ3) How large are infrastructure system changes?

The churn of infrastructure files is comparable to build
files and significantly different with the other file cat-
egories. Furthermore, the infrastructure files have the
highest churn per file (MCF) value among the four file
categories.

Based on the preliminary analysis results, we then address
the following research questions:

RQ1) How tight is the coupling between infrastructure
code and other kinds of code?

Although less commits change infrastructure files than
the other file categories, the changes to IaC files are
tightly coupled with changes to Test and Production
files. Furthermore, the most common reasons for cou-
pling between infrastructure and test are “Integration”

MSR 2015

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis

Dept of Management Science and Technology

Athens University of Economics and Business

Athens, Greece

{tushar,mfg,dds}@aueb.gr

ABSTRACT
Infrastructure as Code (IaC) is the practice of specifying
computing system configurations through code, and manag-
ing them through traditional software engineering methods.
The wide adoption of configuration management and in-
creasing size and complexity of the associated code, prompt
for assessing, maintaining, and improving the configuration
code’s quality. In this context, traditional software engi-
neering knowledge and best practices associated with code
quality management can be leveraged to assess and manage
configuration code quality. We propose a catalog of 13 im-
plementation and 11 design configuration smells, where each
smell violates recommended best practices for configuration
code. We analyzed 4,621 Puppet repositories containing 8.9
million lines of code and detected the cataloged implemen-
tation and design configuration smells. Our analysis reveals
that the design configuration smells show 9% higher aver-
age co-occurrence among themselves than the implementa-
tion configuration smells. We also observed that configura-
tion smells belonging to a smell category tend to co-occur
with configuration smells belonging to another smell cate-
gory when correlation is computed by volume of identified
smells. Finally, design configuration smell density shows
negative correlation whereas implementation configuration
smell density exhibits no correlation with the size of a con-
figuration management system.

CCS Concepts
•Software and its engineering ! Specification lan-

guages; Software maintenance tools; Software libraries
and repositories; Software design engineering;

Keywords
Infrastructure as Code, Code quality, Configuration smells,
Technical debt, Maintainability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c� 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901761

1. INTRODUCTION
Infrastructure as Code (IaC) [13] is the practice of spec-

ifying computing system configurations through code, au-
tomating system deployment, and managing the system con-
figurations through traditional software engineering meth-
ods. For example, a server farm that contains numerous
nodes with di↵erent hardware configurations and di↵erent
software package requirements can be specified using con-
figuration management languages such as Puppet [39], Chef
[37], CFEngine [4], or Ansible [1] and deployed automatically
without human intervention. Such automated yet custom
configured deployment is not only faster than the manual
process but is also reliable and repeatable.
Apart from automating an infrastructure deployment, the

IaC paradigm brings the infrastructure, the code and the
tools and services used to manage the infrastructure, in the
purview of a software system. Therefore, IaC practices treat
configuration code similar to the production code and apply
traditional software engineering practices such as reviewing,
testing, and versioning on configuration code as well.
A lot of work has been done to write maintainable code

[8, 21] and achieve high design quality [36] in traditional
software engineering. Similar to production code, configu-
ration code may also become unmaintainable if the changes
to configuration code are made without diligence and care.
In a recent study, Jiang et at. [14] argued that configura-
tion code must be treated as production code due to the
characteristics and maintenance needs of the configuration
code. Therefore, traditional code and design quality prac-
tices must be adopted to write and maintain high quality
configuration code.
In this context, we planned a preliminary quality analysis

of configuration code where we focused on the maintainabil-
ity aspect of the configuration code quality. We pose the
following questions to achieve the above stated goal:

1. What is the distribution of maintainability smells in
configuration code? Which smells are commonly found
and which ones are rarely found?

2. What is the relationship between the occurrence of de-
sign configuration smells and implementation configu-
ration smells?

3. Is the principle of coexistence applicable to smells in
configuration projects?

4. Does smell density depend on the size of a configura-
tion project?

MSR 2016

integrating code changes building/testing (CI)

releasing to the user deploying a new release

integrating code changes building/testing (CI)

releasing to the user deploying a new release

Is the
release in good

shape?

Was the release a
success?

Is the
release in good

shape?

Was the release a
success?

Is the
release in good

shape?

The release is
botched, how can we

roll back?

Was the release a
success?

What’s the optimal cycle
time for us?

Is the
release in good

shape?

The release is
botched, how can we

roll back?

Was the release a
success?

What’s the optimal cycle
time for us?

Is the
release in good

shape?

The release is
botched, how can we

roll back?

How will a
faster cycle impact

our software
quality?

Was the release a
success?

What’s the optimal cycle
time for us?

Is the
release in good

shape?

The release is
botched, how can we

roll back?

How will a
faster cycle impact

our software
quality?

What best practices
should we adopt?

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

time

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

testing

time

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

ON

testing

time

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

ON

testing

release

time

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

ON

testing

release

ROLLBACK
time

59

What Is Toggle?

if(toggleOn = TRUE){ /* execute this code block*/ }

35

Rolling Back with Run-time
Feature Toggles

if(new_feature_on==true){
 /* code of new feature */
}

ON

OFF

testing

release

ROLLBACK
time

Monitoring
the Release

Progress

What to Monitor?

Metrics are important,
but people optimize for what you
measure or show them, so choose

your KPI carefully!
[John O'Duinn]

#changed code lines

coding time

#open bugs

#releases

#changed code lines

coding time

#open bugs

#releases

time between release

%passing tests

#changes/release

time from commit to release

#cherry-picks/release

time to interaction

crash rates

bug rates

app size

What can you
do for release
engineering?

64

What can you
do for release
engineering?

64

What can
release

engineering
do for you?

65

What do you mean, Dr. Adams?!
These poor students’ research

is impacted by the release
engineering process? They are
just doing empirical research on

large software data!

1. All Releases are Equal
66

1. All Releases are Equal
66

67

Look at Project X!
It had a crazy number of

post-release bugs in this six-
month time window!

67

Look at Project X!
It had a crazy number of

post-release bugs in this six-
month time window!

Well, Project X releases
every 6 weeks, so

you’re counting several
releases…

67

Release Cycles Vary among
Popular Studied Systems

Fig. 3: Integration delay is computed by counting the re-
leases that occur between when an issue status changes to
RESOLVED-FIXED and the the date of the release note that
lists that issue.

Fig. 4: Delays in days between releases of ArgoUML, Eclipse,
and Firefox. The number shown over each boxplot is the
median interval

project. For example, Figure 4, shows that Firefox releases
consistently every 42 days (six weeks), whereas the times
between ArgoUML releases vary from 50 to 220 days. The
consistency of Firefox releases may lead to more delayed
issues, since they rigidly adhere to a six-week release schedule
despite accumulating issues that could not be integrated.

34% to 60% of addressed issues in the traditional
release cycle systems were delayed by one or more releases.
Figure 2 shows that 98% of the addressed issues in Firefox
are delayed by one or more releases. Firefox is expected to
have delayed issues due its rapid release cycles. However,
98% is still a considerably large percentage. Furthermore, even
for the systems that adopt a more traditional release cycle,
34% (ArgoUML) to 60% (Eclipse) of the addressed issues are
delayed by one or more releases. This result indicates that even
though an issue is addressed, integration could be delayed by
one or more releases.

Many delayed issues were addressed well before releases
from which they were omitted. Addressed issues could be
delayed from integration because they were addressed late
in the release cycle, e.g., one day or one week before the
upcoming release date. In order to compare the rapid and
traditional release cycles regarding whether delayed issues
are addressed late in the release schedule, we computed the

Fig. 5: Distribution of days between when an issue was
addressed and the next missed release divided by the release
window time.

Addressing Stage metric (AS) for each issue. The AS metric
is calculated using the following equation: days to next release

release window

,
where days to next release is the number of days when an issue
is addressed before the next release (e.g., the time between t3
to t4 in Figure 3), and the release window is the time in days
between the next upcoming release and the respective previous
release (e.g., t4 to t2). An AS value close to 1 means that an
issue was addressed too close to the next release, whereas a
value close to 0 means that an issue was addressed at the
beginning of a release cycle. Figure 5 shows the distribution
of the AS metric for each project. The smallest AS median
is observed for Eclipse, which is 0.45. For ArgoUML and
Firefox, the median is 0.52 and 0.53, respectively. The AS
medians are roughly in the middle of the release. Moreover,
the boxes extend to cover between 0.25 and 0.75. The result
suggests that, in the studied projects, delayed issues are usually
addressed 1

4 to 3
4 of the way through a release. Hence, it is

unlikely that most addressed issues miss the next release solely
because they were addressed too close to an upcoming release
date.

The integration of 34% to 60% of the addressed issues
in the traditionally releasing systems and 98% in the
rapidly releasing system were delayed by one or more
releases. Furthermore, we find that many delayed issues
were addressed well before releases from which they were
omitted from.

RQ2: Can we accurately predict when an addressed issue
will be integrated?
Motivation. Several studies proposed approaches to inves-
tigate the time required to address an issue [2–7]. These
studies could help to estimate when an issue will be addressed.
However, we find that integration delays when an addressed
issue will be delivered to users. Even though several issues are
addressed well before the next release date, their integration is
delayed. For users and contributors, however, knowing the re-
lease in which an addressed issue will be integrated is of great

#d
ay

s
be

tw
ee

n
re

le
as

es

An Empirical Study of Delays in the
Integration of Addressed Issues

D. A. da Costa et al.
[ICSME 2014]

…, Even Within Systems!
1.0
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.0

10.0
0 200 400 600 800

Fi
re

fo
x

re
le

as
e

#days since prior release 69

Features can be Older than
the Cycle Time

70

Features can be Older than
the Cycle Time

70

Firefox
v49

Features can be Older than
the Cycle Time

70

time

Firefox
v49

Features can be Older than
the Cycle Time

70

time

Firefox
v49

Beta

Features can be Older than
the Cycle Time

70

time

Firefox
v49

Beta

Alpha

Features can be Older than
the Cycle Time

70

time

Firefox
v49

Beta

Alpha

Nightly

Features can be Older than
the Cycle Time

70

time

Firefox
v49

Beta

Alpha

Nightly

feature 1

feature 2
feature

3

feature 4

feature 5

71

71

overlapping of
release series

71

overlapping of
release series

72

72

major
release

72

major
release

minor
release

72

major
release

minor
release

patch
release

72

major
release

minor
release

patch
release

72

major
release

minor
release

patch
release

long-term support release

73

73

So, these students should
always check the cycle
time, type of release and

release overlap?

73

So, these students should
always check the cycle
time, type of release and

release overlap?
YES!

2. All Branches are Equal
74

2. All Branches are Equal
74

75

Weird… The size of this
project fluctuates between

50k and 45k lines!

75

Weird… The size of this
project fluctuates between

50k and 45k lines!

Hmm, did you select the
relevant branch? Several

are developed in parallel!

75

Example: Analyzing Defects
(1 Branch)

Feature Fix Merge
Commit types:

76

master
branch

Example: Analyzing Defects
(1 Branch)

Feature Fix Merge
Commit types:

76

master
branch

Example: Analyzing Defects
(1 Branch)

v1.0

Feature Fix Merge
Commit types:

76

master
branch

Example: Analyzing Defects
(1 Branch)

v1.0

Feature Fix Merge
Commit types:

Pre-
release

76

master
branch

Example: Analyzing Defects
(1 Branch)

v1.0

Feature Fix Merge
Commit types:

Pre-
release

Post-
release

76

master
branch

Example: Analyzing Defects
(1 Branch)

v1.0

Feature Fix Merge
Commit types:

Pre-
release

Post-
release

76

master
branch

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

77

Example: Analyzing Defects
(>1 Branch)

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:

v1.0

master
branch

release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:git log -m

v1.0
release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:git log -m

v1.0
release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:git log -m

v1.0
release
branch

78

Solution: Select 1 Branch for
Analysis and Expand Merge Commits

Feature Fix Merge
Commit types:git log -m

Evolution of #Files over Time

79

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150 linear
growth

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150linear
growth

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150

stable

linear
growth

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

3. All Files are Equal

80

3. All Files are Equal

80

81

This popular web browser
has an enormous codebase!

>30M lines!

81

This popular web browser
has an enormous codebase!

>30M lines!

Yes, but the codebase
contains several projects!
The build configuration

decides which one is
produced!

81

Many files are conditionally
included in deliverables

Tracing Software Build
Processes to Uncover
License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

Aterm

Opkg

Bash

CUPS

Xalan

OpenSSL

FFmpeg

% Excluded Files

0% 20% 40% 60% 80%

Many files are conditionally
included in deliverables

Tracing Software Build
Processes to Uncover
License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

Aterm

Opkg

Bash

CUPS

Xalan

OpenSSL

FFmpeg

% Excluded Files

0% 20% 40% 60% 80%

… because of feature selection, operating
system/hardware configuration, dead code, …

Solution: Pick Configuration, Run
the Build and Check Built Files

83

Solution: Pick Configuration, Run
the Build and Check Built Files

83

Design recovery and
maintenance of build systems

B. Adams et al.
[ICSM 2007]

http://mcis.polymtl.ca/makao.html

code files
mentioned in

build script (if

not forgotten)

Solution: Pick Configuration, Run
the Build and Check Built Files

83

Design recovery and
maintenance of build systems

B. Adams et al.
[ICSM 2007]

http://mcis.polymtl.ca/makao.html

code files
mentioned in

build script (if

not forgotten)

and/or

Solution: Pick Configuration, Run
the Build and Check Built Files

83

Tracing Software Build Processes
to Uncover License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

https://github.com/smcintosh/bee

files accessed by
systems calls (strace;

can be noisy!)

Design recovery and
maintenance of build systems

B. Adams et al.
[ICSM 2007]

http://mcis.polymtl.ca/makao.html

code files
mentioned in

build script (if

not forgotten)

and/or

84

Linux 2.6.16.18

84

Linux 2.6.16.18GCC 1.40
O CLOC

GCC 2.5.8
0 CLOC

GCC 2.5.8
91 CLOC

GCC 2.5.8
786 CLOC

GCC 2.7.2.1
1,022 CLOC

GCC 2.95
3,435 CLOC

GCC 2.95
6,333 CLOC

GCC 3.3.2
37,770 CLOC

GCC 4.1.2
58,801 CLOC

85

85

To summarize, these students
should always manually

check the systems they are
studying, not just blindly run

their scripts?

85

To summarize, these students
should always manually

check the systems they are
studying, not just blindly run

their scripts?
YES!!!

RELENG: International Workshop on
Release Engineering

86

RELENG: International Workshop on
Release Engineering

86

230 participants3 editions

dozens of industry

& academic talks

RELENG: International Workshop on
Release Engineering

86

230 participants3 editions

dozens of industry

& academic talks

RELENG: International Workshop on
Release Engineering

86

230 participants3 editions

RELENG 2016:
18/11 with FSEhttp://releng.polymtl.ca

dozens of industry

& academic talks

http://google-engtools.blogspot.ca/

http://releng.polymtl.ca/
RELENG2015/html/links.html

http://www.openstack.org/
blog/author/james-e-blair/

http://google-engtools.blogspot.ca
http://google-engtools.blogspot.ca/
http://releng.polymtl.ca/RELENG2015/html/links.html
http://google-engtools.blogspot.ca/
http://www.openstack.org/blog/author/james-e-blair/
http://google-engtools.blogspot.ca/

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release

72

major
release

minor
release

patch
release

long-term support release

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release
72

major
release

minor
release

patch
release

long-term support release

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release
72

major
release

minor
release

patch
release

long-term support release

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release
72

major
release

minor
release

patch
release

long-term support release

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release
72

major
release

minor
release

patch
release

long-term support release

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

Many files are conditionally
included in deliverables

Tracing Software Build
Processes to Uncover
License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

Aterm

Opkg

Bash

CUPS

Xalan

OpenSSL

FFmpeg

% Excluded Files
0% 20% 40% 60% 80%

… because of feature selection, operating
system/hardware configuration, dead code, …

Simplified
Pipeline

integrating code changes building/testing (CI)

releasing to the user deploying a new release
72

major
release

minor
release

patch
release

long-term support release

Evolution of #Files over Time

79
• How does the number of files evolve across time in this project?

Seems like the number of files is growing rapidly.

• git log --graph --no-abbrev --decorate --oneline --date-order

What do you see?

https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
“Many times it’s useful to know which branch or tag each commit is associated with. The --decorate flag
makes git log display all of the references (e.g., branches, tags, etc) that point to each commit.”

all commits, ordered
by author time (git log)

0 500 1000 1500 2000

0

50

100

150

https://git-scm.com/docs/git-log/1.7.5
“--first-parent
Follow only the first parent commit upon seeing a merge commit. This option can give a better
overview when viewing the evolution of a particular topic branch, because merges into a topic
branch tend to be only about adjusting to updated upstream from time to time, and this option
allows you to ignore the individual commits brought in to your history by such a merge.”

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
“It’s often useful to view a repository’s history as if it were linear, flattening the graph, often hiding
certain commits in the process…git log starts at master, and then follows each commit’s parents.
With the --first-parent option, it only follows the first parent…”

• git log -m --first-parent --graph --no-abbrev --decorate --raw --oneline --date-order

• Why does the plot look different again, i.e., what did we miss previously?

https://git-scm.com/docs/git-log/2.1.1
“-m
This flag makes the merge commits show the full diff like regular commits; for each merge parent,
a separate log entry and diff is generated. An exception is that only diff against the first parent is
shown when --first-parent option is given; in that case, the output represents the changes the merge
brought into the then-current branch.”

master branch, merge
commits expanded

0 100 200 300

0

50

100

150 large
merges

stable

linear
growth

Many files are conditionally
included in deliverables

Tracing Software Build
Processes to Uncover
License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

Aterm

Opkg

Bash

CUPS

Xalan

OpenSSL

FFmpeg

% Excluded Files
0% 20% 40% 60% 80%

… because of feature selection, operating
system/hardware configuration, dead code, …

